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ABSTRACT
Many real world multiagent applications such as search and res-
cue or traffic management require coordinating teams of heteroge-
neous agents. Unfortunately, learning is difficult in such domains
as agents often converge to a limited set of “acceptable" behav-
iors that may be suboptimal. Quality-Diversity methods offer to
alleviate this problem by shifting the focus from optimizing be-
haviors to finding a diverse repertoire of behaviors. However, in
multiagent environments with diverse and tightly-coupled tasks,
exploring the entire space of behaviors is often intractable. Agents
must focus on only finding useful behaviors that are conducive to
good team performance. We introduce Behavior Exploration for
Heterogeneous Teams (BEHT), a multi-level training framework
that allows systematic exploration of the agents’ behavior space
required to complete diverse tasks as a coordinated team. Via a com-
bination of diversity search using dense agent-specific rewards and
team-objective maximization via an evolutionary method, agents’
behavior space is relearned iteratively to find diverse cooperative
behaviors. In multiagent environments which call for diverse co-
ordinated team behaviors, we show that BEHT allows agents to
learn diverse synergies that are demonstrated by the diversity of
acquired agent behavior in response to the environment and other
heterogeneous agents.
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1 INTRODUCTION
Multiagent systems are indispensable in complex real-world tasks
that require distributed control and robustness, and have been
applied to a wide variety of tasks such as search and rescue [31], air
traffic control [13, 28], bandwidth management [2, 10] and satellite
configuration [8]. Interestingly, many such real-world applications
require agents to work together as a team.

In spite of the successful applications, learning in heterogeneous
multiagent systems remains difficult, which limits their wide-scale
adoption [29]. An important aspect of agents in the heterogeneous
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Figure 1: BEHT: A multi-level training method to explore
diverse agent behaviors for heterogeneous team coordi-
nation. While agents explore their behavior space using
dense agent-specific rewards (sub-figure (a)), an evolution-
ary method retains behaviors that optimize the team-based
objective (sub-figures (b), (c)). This biased selection allows it-
erative transformation of the agent behavior space by apply-
ing a dimensionality reduction algorithm to the agent tra-
jectories (sub-figure (d)). The resulting method allows het-
erogeneous agents to progressively explore regions of the
behavior space that promote team coordination on diverse
goals.

setting is the ability to reason about the behavior of other agents
and adapt [1]. Specialization of behavior, often complementary, is
necessary to allow working on diverse tasks and satisfy hardware
and morphology restrictions. This presents a need to systematically
find useful specializations, execute diverse behaviors and assume
new roles in response to the capabilities of other agents to suc-
cessfully solve the task as a team. In environments with diverse
tasks and heterogeneous agents, either the types of agents and the
required capabilities must be pre-designed by an expert or they
must be explored whilst learning.

Quality Diversity (QD) methods are a new family of evolution-
ary methods that favour functional diversity of behaviors over an



objective measure of performance [3, 17, 23]. By evolving a reper-
toire of behaviors, QD methods enable an agent to operate with
several high performing and diverse behaviors [21]. In the context
of heterogeneous multiagent teams, QD methods are appealing due
to their emphasis on diversity that can aid in agent specialization
and ad-hoc cooperation.

In multiagent settings however, exploring the space of all pos-
sible behaviors is often intractable due to the potentially large
behavior space imposed by multiagent interaction. Furthermore, in
problems involving diverse tasks, agents cannot be expected to be
able to perform the entire spectrum of behaviors required to satisfy
the tasks and must specialize. If useful behaviors are discovered
by different agents to specialize, the number of agents with the
different behaviors must also be balanced so as to maximize the
team objective.

In this work, we introduce Behavior Exploration for Heteroge-
neous Teams (BEHT), a multi-level training framework that allows
systematic exploration of the agent capabilities required to com-
plete diverse tasks as a coordinated team. The two primary goals,
behavioral diversity search and optimization of team objectives,
are decoupled into two optimization processes. A gradient-based
optimizer trains a population of policies to optimize agent-specific
rewards for useful primitive behaviors. Policies are projected in a
behavior space that is inferred by applying a dimensionality reduc-
tion method to the policy trajectories. By limiting the number of
policies in a given radius of the behavior space, diversity in policies
in encouraged.

The behavioral diversity search is followed by an evolutionary
algorithm (EA) that maximizes the sparse team-based objective.
The selection mechanism of the EA acts as a filter over the regions
of the behavior space that contribute to the team objective. The
trajectories of the policies from the filtered behavior space are then
used to relearn a new behavior space that captures the variance of
the current agent behaviors and allows moving in the direction of
diversity that is supported by the team objective. The key insight of
this work is: the decoupling of diversity search and optimization, with
iterative refinement of the behavior space, allows the transformation
of fitness on the team objective to the direction of functional diversity.

The primary contribution of this work is to introduce BEHT, a
multi-level quality diversity and optimization method for robust
adaptation and coordination in heterogeneous agent teams. Figure
1 outlines BEHT’s iterative learning approach. We demonstrate
the strength of BEHT on a multiagent rover exploration problem
with sparse feedback and a diverse set of goals that requires tight
agent coupling between heterogeneous agents. Our approach shows
significant performance improvement and adaptibility in multia-
gent settings over Malthusian Reinforcement Learning [18] and the
Intrinsic Curiosity module [22], current state-of-the-art diversity
search methods.

2 BACKGROUND
This section provides an overview of recent work in multiagent
learning, Quality Diversity methods and ad-hoc teaming.

2.1 Multiagent Learning
Learning in a multiagent setting is inherently difficult compared to
single agent learning because the learning agents modify the “en-
vironment" in which all other agents learn and operate [4]. Single
agent learning methods are not readily applicable to multiagent
scenarios since the underlying Markov assumptions of these meth-
ods are violated [16, 29]. This is a result of the environment being
non-stationary as each agent learns independently and considers
the other learners as part of the environment. Independent learners
(e.g., Independent Q-Learning) ignore the multiagent nature of the
problem entirely and fail when other agents in the system (espe-
cially opponents) adapt their policy. Despite the brittleness, they
have been used in practice when scalability and robustness are the
primary goals [19, 27].

Majority of the most effective multiagent learning techniques
typically rely on communication, agent modeling or shared fit-
ness for learning simultaneously with other agents [11]. Reward
or fitness shaping has also been effective in enabling agents to
learn locally, while ensuring they still optimise the system level
objectives [24]

In tightly coupled multiagent learning, training based solely on
the team rewards is often difficult as they require agents to take
specific joint actions, and are hence inherently sparse. Moreover,
relying on agent-specific rewards that incentivize learning primi-
tive behaviors is sub-optimal since they can either be misaligned
with or fail to capture the team objective. Multiagent Evolutionary
Reinforcement Learning (MERL) [14], a cooperative multiagent
reinforcement learning approach utilizes a bi-level optimization of
sparse team rewards and dense agent specific rewards to ensure
alignment and faster convergence. However, extending MERL to
heterogeneous agent teams is non-trivial since MERL does not leave
room for explicit diversity search.

2.2 Quality Diversity
Quality Diversity (QD) methods have been widely applied in ro-
botics and multiobjective optimization problems for learning a
repertoire of diverse behaviors [3, 5, 21]. While traditional learning
is geared toward optimization of controls, QD shifts the focus to
learning a wide range of novel behaviors that can solve the task.
Controllers are typically defined by parametric functions that can
be optimized via evolutionary or machine learning approaches.
Novelty is measured by condensing the learned behavior to a com-
pact representation called a Behavior Characterization (BC). The
BC can either be hand-designed or learned using dimensionality
reduction methods like deep auto-encoders [12]. Methods like the
intrinsic curiosity module are also suitable for diversity search
[22]. They differ from QD methods in that their primary goal is
exploration for maximization of a reward, whereas QDmethods pri-
marily disregard reward maximization to explicitly favor diversity
maximization.

In practice, most variants of the QD algorithm such as Novelty
Search and MAP-Elites [17, 20] can be described as iterative pro-
cesses with two primary operations: 1) Organize a collection of
behaviors along their BC; and 2) Within a population of behaviors,
select the most novel behaviors that have the highest fitness within



their niche. The organization of behaviors can either be a structured
grid or an unstructured archive.

2.3 Multiagent Ad-Hoc Teaming
The goal of ad-hoc teaming is to create robust agents that can
perform successfully in teams that they have not participated in a
priori [26]. The ability to adapt to the behavior of team members
is particularly crucial for real world applications, since they often
involve open multiagent settings where agents are free to enter
and exit the system. When agents have unique capabilities, their
ability to become part of ad-hoc teams can fundamentally change
the outcome in cooperative tasks. This would entail that the agents
can cooperate toward common goals without having learned to do
so during training. To cooperate, agents must not only have aligned
goals, but the ability to predict and model others’ reactions to their
behavior. Learning transferable skills that can be adapted, reused
and aligned with unseen team members has shown success [7].

While the behavior can be modeled when agents are similar, di-
verse behaviors and specialization can complicate this significantly,
especially if it is unclear to the agent what others’ behavior sets are.
Learning diverse behaviors and adapting to changing teams is a
cornerstone of successful team performance. Recently, Malthusian
Reinforcement Learning has been successfully shown to create syn-
ergistic teams in which agents specialize and operate with other
agents in different environments [18]. By operating simultaneously
in different teams on different environments, agents learn to dis-
cover unique strategies to outcompete other agents on a shared
resource. However, in absence of adversarial pressure created by
shared resources, agents have no incentive to discover diverse be-
haviors.

3 METHOD: BEHAVIOR EXPLORATION FOR
HETEROGENEOUS TEAMS (BEHT)

BEHT starts with a population of randomly initialized policies. The
policies are trained using Proximal Policy Optimization (PPO), a gra-
dient based optimization method, on dense agent-specific rewards
[25]. The trajectories of the trained policies (any data related to the
policies that captures their behavior can be used) are collected as the
initial dataset. The dimensionality reduction algorithm is trained
on this dataset to learn a latent representation of the trajectories.
This low dimentional representation defines the behavior space of
the policies. Each policy from the population is then projected in
the behavior space. This completes the initialization of BEHT.

Diversity search:With the agent policies projected in the be-
havior space, a QD like iteration is performed:

(1) A policy is randomly selected from the population;
(2) The policy is mutated by perturbing weights of the policy

network probabilistically;
(3) The mutated policy is trained using PPO to maximize a dense

agent-specific reward for a fixed number of episodes and
evaluated;

(4) The trained policy is finally projected in the behavior space.
Algorithm 1 provides pseudo-code for these steps. There are three
key differences that set this apart from a standard QD iteration
[5]. Firstly, instead of mutating a trajectory, a policy is directly mu-
tated. Secondly, every mutation is followed by training on a dense

agent-specific reward. Finally, unlike QD, the behavior descriptor
used to project the policies in the behavior space is automatically
determined by feeding the trajectory of the policies to a dimen-
sionality reduction method. Over the course of several iterations of
this process, the mutations allow to progressively fill the behavior
space.

Algorithm 1: Diversity Search
1 Function policy_qd(𝑝𝑜𝑝𝜋):

Input: population of policies, 𝑝𝑜𝑝𝜋
Result: repertoire of diverse policies

2 for 𝑛 ← 0 to 𝐼 do
3 𝜋 = selection(𝑝𝑜𝑝𝜋 ) // random policy from population

4 𝜋′ = mutate(𝜋 )
5 𝜋′ ← maximize(𝑟𝑒𝑤𝑎𝑟𝑑𝑎𝑔𝑒𝑛𝑡 ) // train with gradient

method on agent-specific reward

6 𝑏𝑐′ = evaluate_(𝜋′)
7 𝑏𝑐 ← closest_policy_in_archive()
8 if distance (𝑏𝑐′, 𝑏𝑐) > 𝜆 then

/* new policy occupies unoccupied region in

behavior space */

9 add_policy (𝜋′, 𝑏𝑐′)
10 else

/* new policy competes locally with the closest

policy in the behavior space */

11 𝜋𝑐 = policy(𝑏𝑐′)
12 if reward(𝜋𝑐 ) < reward(𝜋′) then
13 add_policy (𝜋′, 𝑏𝑐′)
14 remove_policy (𝜋𝑐 )

Team-objective optimization: The next phase of BEHT uses
an evolutionary algorithm (EA) to train the policies on the sparse
team-based objective. A population of teams, each with equal num-
ber of random policies from the policy population, is initialized. A
policy that is part of multiple teams uses the name network and re-
play buffer across teams. The population of teams is then evaluated
on the team task and a team reward for each team is distributed
at the end of the episode as its fitness. A selection operator selects
a portion of the population for survival with probability propor-
tional to their fitness. The weights of the teams are probabilistically
perturbed through mutation and crossover operators to create the
next generation of teams. A portion of the teams with the highest
fitness is preserved at each iteration.

After several evolutionary updates, only a portion of the policy
population with the highest fitness (the summed fitness of the teams
in which the policies participated) will be retained. The EA thus
essentially filters out regions of the behavior space that have the
highest fitness on the team objective. By means of adjusting the
population dynamics of teams and policies within the teams via
fitness, the EA also balances the number and quantity of different
behaviors needed for optimal team performance.

Behavior space refinement: Finally, the latent representation
of the policies, the behavior space, is updated to take into account
the new behaviors discovered from mutation of policies on agent-
specific rewards and the updated distribution of those policies in the



behavior space. By applying the dimensionality reduction method
to the updated policies, the behavior space is relearned to align with
themaximumvariance (diversity) of the highest performing policies.
The policies are then projected back in the updated behavior space.
Often, this update will project originally distant policies closer
together, in which case, the policy with the highest agent-specific
reward will be retained. This is a safe replacement since closeness
in the behavior space implies that the policies in consideration
behaved similarly in teams. The size of the policy population is
thus often reduced after a dimensionality reduction update, but
will expand again in the next QD-like iteration. BEHT then goes
back to the QD-like phase of exploration and agent-specific reward
maximization while exploiting the experiences collected via the
evolutionary phase. The QD-like phase can now continue to explore
behavioral diversity in the new behavior space which likely offers
regions that were not already fully covered in the previous iteration.

BEHT iteratively performs the following three phases:
(1) Diversity search: Filling the behavior space by maximizing

agent-specific reward;
(2) Team-objective optimization: Evolution of teams of poli-

cies to maximize the team objective and balance proportions
of behaviors;

(3) Behavior space refinement: Learning a new behavior space
by feeding updated policy trajectories to the dimensionality
reduction method.

Algorithm 2 provides a sketch of this iterative process.

Algorithm 2:Multiagent Coordination
1 Function train_teams(𝐾 :Integer, 𝑁 :Integer):
2 Initialize a population 𝑝𝑜𝑝𝜋 of N policy networks 𝜋

with weights 𝜃
3 Initialize N empty replay buffers, one for each policy

network
4 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to∞ do

/* Fill behavior space using QD */

5 𝑝𝑜𝑝𝜋 , data← policy_qd (𝑝𝑜𝑝𝜋 )
6 𝑡𝑟𝑎𝑖𝑛_𝑑𝑟 (data)
7 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡_𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 ()
8 Initialize a population 𝑝𝑜𝑝𝐾 of K teams
9 for 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to 𝐺 do
10 foreach team 𝑝 ∈ 𝑝𝑜𝑝𝐾 do
11 Assign M random policies 𝜋 from 𝑝𝑜𝑝𝜋

12 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑘 = evaluate (𝑝)
13 Rank population 𝑝𝑜𝑝𝐾 based on fitness
14 Select the first 𝑒 teams ∈ 𝑝𝑜𝑝𝐾 as elites
15 Select the remaining (𝑀 − 𝑒) teams from 𝑝𝑜𝑝𝐾 ,

to form set 𝑆 using tournament selection
16 while |𝑆 | < (𝑀 − 𝑒) do
17 crossover between randomly sampled policy

𝜋 ∈ 𝑒 and 𝜋 ∈ 𝑆 and append to S

18 𝑝𝑜𝑝𝜋 ← 𝑆 ∪ 𝑒
19 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡_𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 ()

Figure 2: Various Points of Interest (POIs)must be jointly ob-
served to get a reward. An agent in the rover environment
navigates using the (𝑑𝑥, 𝑑𝑦) actions and observes rovers and
POIs within a chosen observation radius 𝑂 . Optimal teams
will try to balance observing Timed and Low-Power POIs
that require higher speeds and observation radii respec-
tively.

4 EXPERIMENTAL SETUP
We evaluate the performance of BEHT on several scenarios created
using a variant of the multiagent heterogeneous rover exploration
problem [9].

4.1 Compared Baselines
The primary metric of performance for this work is the team fit-
ness. We also look at the variety of discovered policies over the
course of learning since behavioral diversity is conducive to getting
a higher fitness on the team objective. Unlike QD methods, the
focus is not a full coverage of the behavior space, but rather only
discovery of regions of the behavior space that contribute to the
team performance.

We compare our method with three baselines, each serving as a
state-of-the-art in a particular dimension of the problem: 1) Multia-
gent Evolutionary Reinforcement Learning (MERL), that provides a
two-tier architecture of gradient based and evolutionary optimiza-
tion to learn in tight coupled multiagent settings [14]; 2) Malthusian
Reinforcement Learning, which enables discovery of synergies in
agents operating on shared resources via managing population
dynamics [18]; and 3) The intrinsic curiosity module, that allows
exploration of diverse behaviors via dense pseudo-rewards based
on an agents’ prediction error in predicting its observations in
the next time step [22]. Our method, BEHT, aims to combine the
strengths of all three baselines by enabling coordination in tightly
coupled settings via diversity search and implicit management of
population dynamics via an evolutionary algorithm.

4.2 Rover Coordination Problem
In this section, we briefly describe the original rover exploration
problem and a variation for heterogeneous agents used in this work.



A team of rovers in a continuous two-dimensional space must
observe points of interest (POIs) that are spread over the environ-
ment. A POI is successfully observed when a required number of
rovers are within its observation radius. We call this the coupling
requirement of the POI. Thus, to make a successful observation,
rovers equal to or greater than the coupling requirement of the POI
must simultaneously observe it from within the POI’s observation
radius. The rovers are equipped with two density sensors to detect
rovers and POIs, represented by equations 1 and 2.

𝑆𝑟𝑜𝑣𝑒𝑟,𝑞 =
∑
𝑗 ∈𝐽𝑞

1
𝑑 (𝑖, 𝑗) (1)

In equation (1), 𝑞 is the quadrant, 𝑑 measures the Euclidean distance
between the sensing rover 𝑖 and another rover 𝑗 ; 𝐽𝑞 is the set of all
rovers in quadrant 𝑞, that are within the observation radius of the
rover 𝑖 .

𝑆𝑃𝑂𝐼,𝑞 =
∑
𝑘∈𝐾𝑞

𝑣𝑘

𝑑 (𝑖, 𝑘) (2)

In equation (2), 𝑑 measures the Euclidean distance between the
sensing rover 𝑖 and the POI 𝑘 ; 𝐾𝑞 is the set of POIs in the quadrant
𝑞, that are within the observation radius of the rover 𝑖 . Defined with
equations (1) and (2), a rover’s observation is a fixed sized vector
that remains unchanged regardless of the number of agents and
POIs in the environment.

The system reward is computed using Equation 3.

𝐺 (𝑧) =
∑
𝑘

∏
𝑖 𝑁 (𝑖,𝑘)𝑉𝑘

1
𝑛

∑
𝑗 𝑑 (𝑖, 𝑘)

(3)

𝐺 (𝑧) is defined for 𝑧, the joint state-action of the rovers, 𝑉𝑘 is
the value of the POI 𝑘 , 𝑁𝑖,𝑘 is an indicator function that is true if
the rover 𝑖 is within the observation radius of the POI 𝑘 and 𝑑 (𝑖, 𝑘)
is the Euclidean distance between rover 𝑖 and POI 𝑘 .

Real life robot exploration missions are often significantly richer
than this setting in agent diversity, tasks and coordination (cou-
pling) constraints. We model some of this diversity by introducing
energy constraints and a variety of POI variants that call for diverse
observation strategies:

(1) Vanilla POIs: The default POIs from the rover exploration
task that reward agents with a specific value (equation 3)
when observed simultaneously.

(2) Timed POIs: Mission critical POIs that dictate urgency. At
every time step, the value of a Timed POI is reduced by one.

(3) Low-Power POIs: Either Vanilla or Timed POIs that are
harder to detect. The probability of a Low-Power POI being
encoded in the rover’s input state (equation 2) is proportional
to the observation radius of the rover. Agents with higher
observation radius (and hence higher energy consumption)
are more likely spot these.

At the beginning of every episode, every rover is given a fixed
number of energy units 𝑒 . The amount of energy units required at
time step 𝑡 , is governed by equation 4.

𝑒𝑡 = 0.5𝑜𝑡 + 0.3𝑣𝑡 (4)

Where,𝑜𝑡 is the observation radius of the rover at time 𝑡 and 𝑣𝑡 is the
velocity. The coefficients in the equation can be adjusted based on

the specific requirements of the problem. Rovers can choose active
velocity and observation radius as part of their actions. Higher
speeds and radii require more energy and will reduce a rover’s time
of operation in the environment. Figure 2 shows a rover’s view in
the environment.

The observation space for the behavior policies consists of den-
sity estimates per quadrant defined by equation 2 for each POI
variant. The rovers also have a density estimate per quadrant for
sensing other rovers as described by equation 1. In addition to the
density sensors, the current available energy 𝑒 , represented by a
real number, is also encoded in the observation vector. Thus, the
size of the observation vector is (4 ∗ 3 + 4 + 1) = 17. Policies are
represented as neural networks that map the input state vector to
a corresponding (𝑑𝑥, 𝑑𝑦) action pair that lies in [−2.0, 2.0]2 and an
observation radius 𝑜𝑡 in [3, 10]. At every time step, a policy takes
an action (𝑑𝑥, 𝑑𝑦, 𝑜𝑡 ) based on the current state that decides its
movement in the (x, y) direction and the observation radius that
will be used for computing the observation vector during the next
time step. For all experiments presented in this work, the size of
the world is 40𝑥40 units, and each episode lasts for 50 time steps.

𝑟𝑖,𝑡 =
𝑣𝑘

𝑑 (𝑖, 𝑘) (5)

Equation (5) defines the dense reward 𝑟𝑖,𝑡 for rover 𝑖 at time
𝑡 which is used to train the policies. The function 𝑑 () measures
the Euclidean distance between the sensing rover 𝑖 and the closest
POI 𝑘 with a value 𝑣𝑘 . During the quality diversity phase of our
algorithm, the policy population is trained using PPO on this local
reward.

The trajectory of the policy that is fed to the dimensionality
reduction method is a vector of (𝑜𝑡 , 𝑣𝑡 , 𝑑𝑟,𝑡 , 𝑑𝑝,𝑡 ) tuples for every
time step 𝑡 , where 𝑜𝑡 is the observation radius used by the agent,
𝑣𝑡 is the current speed, 𝑑𝑟,𝑡 is the distance to the closest rover and
𝑑𝑝,𝑡 is the distance to the closest POI. For the rover coordination
problem, the tuple (𝑜𝑡 , 𝑣𝑡 , 𝑑𝑟,𝑡 , 𝑑𝑝,𝑡 ) captures the rover’s POI strat-
egy (which POIs to observe) and the rover’s coordination strategy
at time 𝑡 . For an episode length of 50 steps, each policy trajectory
is a vector of size 4 ∗ 50 = 200.

Figure 3: Experimental Setup 1: POIs are distributed radially.
Higher valued Timed and Low-Power POIs are further away
than Vanilla POIs. Agents start from the center.



5 RESULTS
Several experiments are conducted to quantitatively and qualita-
tively study the effectiveness of BEHT by observing the perfor-
mance on the team-objective and discovered behaviors respectively.
We use Principal Component Analysis (PCA) as our dimensionality
reduction method since it has been used successfully in single-
agent QD methods to learn the behavior space [6]. PCA is a widely
used technique in machine learning and statistics that finds a lin-
ear projection of high dimensional data with linearly uncorrelated
variables. In our experiments, PCA is used to project the high di-
mensional behavior trajectories into a low dimensional space which
is used as the behavior space.

5.1 Multiple Independent Agents: Loose
Coupling

Reinforcement learning methods are particularly good at evaluating
the value of a given policy in an environment and further updating
it to maximize a reward. However, in rich environments with large
state and action spaces, finding good diverse policies would entail
a computationally exhaustive search. The first experiment explores
how systematically searching through the regions of the behavior
space that yield rewards can be an helpful endeavor for finding
diverse policies.

To make fair comparisons with single-agent training methods,
we set the coupling count of the rover exploration problem to one: a
single agent can visit a POI to get a reward equal to the value of the
POI 𝑣𝑘 . The three POI variants are distributed radially throughout
the environment. The Vanilla POIs are closer to the center of the
environment and are randomly assigned a reward value 𝑣𝑘 between
[3, 5]. The Timed and Low-Power POIs are distributed further from
the center and have rewards in the range [10, 15]. Figure 3 shows
this setup. There are 10 rovers (agents) and 12 POIs.

With limited time steps and energy units (given by equation 4),
the local optimum in this setting is to visit the closest pois from the
agent. Reinforcement learningmethods are likely to get stuck in this
optimum since visiting the higher valued outward POIs, requires an

Figure 4: Performance as independent agents.

agent to take a long trajectory of sub-optimal actions (figure 3 (A)).
In this loosely coupled scenario, because the agents do not require
to coordinate their visits to the POIs, the optimal strategy is to
travel outwards with higher velocity and large observation radius
to visit the higher valued Timed and Low-Power POIs ((figure 3
(B)).

Figure 4 shows the normalized cumulative reward (summed val-
ues of visited POIs) obtained by BEHT and the baselines. The dense
reward used for the QD-like iteration in BEHT is the Euclidean
distance to the closest POI, given by Equation (5). As this is a single-
agent setting, the team-objective used by the EA is the sum of
rewards of all agents in the team. At every behavior space refine-
ment step, PCA reduces the policy trajectories down to a three
dimensional behavior space. Agents trained using BEHT learn to
visit close to 90% of the POIs.

Malthusian Reinforcement Learning (MRL) relies on a suitable
reward that forces agents to specialize. As agents can independently
visit the same POIs and get rewarded, there is no implicit incentive
in the reward signal to specialize. Agents using MRL therefore
only visit the closest lower valued POIs. In figure 4, Malthusian
RL (Persistent) shows the performance of agents when POIs are
persistent. To allow MRL to perform optimally, we make the POIs
non-persistent: a POI only gives a reward to the first agent that
visits it. This allows agents with MRL to specialize in order to visit
Timed and Low-Power POIs. Agents trained with BEHT perform
slightly better than MRL since the specialization is not driven by
the reward structure but exploration of the behavior space itself to
maximize the reward. MRL (both plotted variants) is setup for four
species (𝐿 = 4) and a dynamic population size.

Agents trained with the intrinsic curiosity module generate their
own shaped rewards based on the prediction error in predicting the
next observation. This allows agents to discover some of the POIs
but they get stuck at the sub-optimal lower valued inner circle of
Vanilla POIs. Occasionally, agents stumble upon the higher valued
outer POIs but do not do so consistently.

5.2 Multiagent Coordination: Tight coupling
In this section, we explore how BEHT can be effective for learn-
ing strong synergies required for tight coupled coordination of
heterogeneous agents. We perform tests on several coupling config-
urations to see how BEHT and the baselines can learn the required
behavior diversity to reach the different POI variants and at the
same time, favour behaviors that allow the team to coordinate the
visits. There are 10 agents that start every episode from the center
of the environment and 15 POIs (all variants) uniformly distributed
throughout the environment. Unlike the previous experiment, since
agents do not operate independently, POIs are not persistent. Once
observed by a group of agents equal to or greater than the cou-
pling requirement, the corresponding POI is removed from the
environment.

BEHT uses the Euclidean reward (equation 5) for the QD-like
phase and the global reward𝐺 (𝑧) (equation 3) as the fitness for the
evolutionary algorithm phase. In all the tested coupling configura-
tions (figure 5), agents using BEHT acquire sufficient diversity to
observe all POI variants and learn to coordinate. As the coupling
increases, the overall problem becomes significantly harder due



Figure 5: Performance on the tightly-coupled task for coupling requirement of 2, 3, and 7 respectively.

to increased reward sparsity and the overall team performance
reduces, but stays significantly above the tested baselines.

MERL uses the same rewards (equations 5 and 3) as BEHT, but
learns a sub-optimal team strategy. Although MERL has a com-
parable two-tier structure with dense agent-specific rewards and
sparse team rewards, it fails to account for the needed diversity
in agent behavior required to perform optimally. The degradation
of performance with increased coupling is similar to BEHT as the
evolutionary algorithm in MERL has to learn using an increasingly
sparse team reward.

Teams trained with MRL are able to observe at most 40% of the
total POIs for a coupling of two but the performance quickly drops
to observing less than 10% POIs as the coupling is increased. The
sub-optimal performance at lower coupling is expected since MRL
does not explicitly encourage exploration of behavioral diversity.
The evolutionary algorithm in MRL uses the team fitness to manage
the population dynamics but does not apply selection pressure in
the direction of the fitness. With sparser rewards, the population
dynamics updates in MRL slow down due to the lack of gradient
information which prevents new innovation in behavior as well as
the incentive to coordinate.

5.3 Adaptation in a Dynamic Environment
To test how BEHT can systematically move through the behavior
space in response to the changes in the environment, a dynamic
environment is setup such that after every 2000 generations, the
POIs in the environment change. In our test domain, this implies
changing the distribution of the POI variants and their coupling
requirements such that the currently stable behaviors are no longer
optimal. This allows to inspect the effect of selection pressure from
the evolutionary algorithm on discovering, refining and pruning
behaviors. To understand the distribution of behavior policies in
the behavior space, PCA projects the policy trajectories to a 2D
behavior space.

The behaviors are clustered in the behavior space to allow qual-
itative analysis. We want to look at the distribution and relative
population sizes of the stable behavior clusters after changes to
the environment. Figure 6 shows the discovered behaviors that

achieve the highest fitness over five consecutive epochs, each of
2000 generations (bottom row). On the top, the heat maps depict
the distribution of POIs for each epoch and the potential trajec-
tory of movement in the behavior space that might have led to the
discovery of the clustered behaviors on the bottom row. Over the
course as the distribution changes, new behaviors are discovered
and older discarded or displaced (via mutation) in the direction
necessary to maximize cooperative behavior.

In the first epoch the environment consists only of vanilla POIs.
This is equivalent to the classic rover exploration problem, where
behavioral diversity is largely unnecessary. Behaviors with higher
velocities and observation radii are naturally more energy demand-
ing (equation 4) and will have lower fitness (due to lower time of
operation in the environment) and are therefore unfavourable. This
is evident in the discovered stable behaviors (Epoch 1, bottom row).

In the second epoch, in addition to vanilla POIs, several Timed
POIs are introduced. Rovers should prioritize high valued Timed
POIs over vanilla POIs. This must be balanced with the energy re-
quirement: If too many rovers learn behaviors for observing Timed
POIs, the lower operation time due to increased velocity would
imply that only a small percentage of the rovers will survive long
enough in the episode to observe all the POIs, thus reducing the
team fitness. As shown in figure 6, populations of three behav-
ior clusters are stable in this epoch. Agents with behaviors from
increased observation radii with slower speeds and reduced ob-
servation radii with faster speeds are driven towards discovering
and observing Timed POIs. The third behavior cluster with average
speed and observation radius is a carry-over from the last epoch
that is still stable and enables observing vanilla POIs.

All POI variants are uniformly distributed in the third epoch
leading to two dramatic changes. The behaviors with an average
speed and observation radius has a significantly reduced population.
At the same time, new behaviors with large observation radii and
high speeds are discovered (bottom row). These can be critical for
observing the increased number of Timed and Low-Power POIs.
Potentially due to the higher energy requirement and consequent
lower fitness, the number of such behaviors is very small.



Figure 6: The distribution of POIs in the environment and the potential diversity search trajectory (top row), and the corre-
sponding optimal behaviors projected in the behavior space (bottom row) is shown for five consecutive epochs (1) through (5).
The distribution of POIs is changed after each epoch. In the first and fourth epochs, the environment consists primarily of
Vanilla POIs (dark blue gradient) which call for behaviors with average speed and small observation radius. The second epoch
introduces Timed POIs (blue to green gradient) which must be prioritized. This allows discovery of high velocity behaviors
(behaviors colored green in epoch two’s behavior space). Epochs three and five have a uniform distribution of Vanilla, Timed
and Low-Power POIs, requiring behaviors with varying speeds and observation radii to cooperate. Both epochs produce sta-
ble behaviors that specialize for each POI type (four behavior clusters in their corresponding behavior space). The change in
relative populations of the clustered behavior populations in the five epochs, highlights the adaptive nature of BEHT.

The fourth epoch shows a collapse in behaviors that required
higher energy as Timed POIs are removed from the environment.
This regression in specialization is also favorable. In an exploratory
mission with a fleet of specialized robots, identifying and limit-
ing the capabilities needed to complete current goals can help to
conserve valuable resources.

In the fifth epoch, all POI types are uniformly distributed. Stable
behaviors resemble the behaviors seen in the third epoch closely,
except for the change in population of different behaviors. This
change roughly corresponds to the change in distribution of the
POIs (top row).

Looking qualitatively at the discovered behaviors gives us further
insights into the strength of BEHT. BEHT implicitly controls the
population dynamics with the evolutionary algorithm and simulta-
neously filters the behavior space to discover promising behaviors.

6 CONCLUSION
We introduced BEHT, a multi-level training framework that allows
systematic exploration of the agents’ behavior space, required to

complete diverse tasks as a coordinated team. BEHT decouples the
search for behavioral diversity and fitness maximization. A Quality
Diversity like approach uses gradient-based optimization to train
agents to maximize dense agent-specific rewards and mutates them
to fill the behavior space. Concurrently, an evolutionary algorithm
maximizes the sparse team-based objective by applying selection,
mutation and crossover operators to a population of agent teams.
The selection operator essentially filters the successful regions of
the behavior space while also balancing the number of agents of
different behaviors.

The decoupling of the diversity search and optimization process
allows the transformation of performance on the team-objective to
direct the direction of functional diversity. The resulting method
allows agents to progressively explore promising regions of the
behavior space that promote team coordination on diverse goals.

In this work, BEHT used a fixed allocation of computational
resources across the QD, EA and behavior space refinement phases.
Exploring methods to dynamically allocate resources to the three
phases and execute them concurrently is a potentially promising



step for future work. Finally, we will explore how BEHT can be
extended tomore complex domains such as StarCraft [30], RoboCup
[15] and general mixed cooperative-competitive settings.
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