
Learning Inter-Agent Synergies in Asymmetric Multiagent
Systems

Gaurav Dixit
Oregon State University

Corvallis, USA
dixitg@oregonstate.edu

Kagan Tumer
Oregon State University

Corvallis, USA
kagan.tumer@oregonstate.edu

ABSTRACT
In multiagent systems that require coordination, agents must learn
diverse policies that enable them to achieve their individual and
team objectives. Multiagent Quality-Diversity methods partially ad-
dress this problem by filtering the joint space of policies to smaller
sub-spaces that make the diversification of agent policies tractable.
However, in teams of asymmetric agents (agents with different
objectives and capabilities), the search for diversity is primarily
driven by the need to find policies that will allow agents to assume
complementary roles required to work together in teams. This work
introduces Asymmetric Island Model (AIM), a multiagent frame-
work that enables populations of asymmetric agents to learn diverse
complementary policies that foster teamwork via dynamic popula-
tion size allocation on a wide variety of team tasks. The key insight
of AIM is that the competitive pressure arising from the distribution
of policies on different team-wide tasks drives the agents to explore
regions of the policy space that yield specializations that generalize
across tasks. Simulation results on multiple variations of a remote
habitat problem highlight the strength of AIM in discovering robust
synergies that allow agents to operate near-optimally in response
to the changing team composition and policies of other agents.
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1 INTRODUCTION
Multiagent learning is an appealing paradigm to address many
complex real world domains such as coordinating healthcare [15],
air traffic control [9, 25], strategy games [2, 28] and robotic au-
tomation [10, 14]. Success in many of these applications requires
that agents not only learn good actions, but that they learn good
joint actions so they can coordinate and work together as teams
[1, 12]. This problem becomes even more difficult when agents are
asymmetric—meaning they have different capabilities and different
objectives—and must learn task agnostic synergies that capture
inter-agent relationships beneficial across a spectrum of tasks. (We
use asymmetric to distinguish this class of problems from heteroge-
neous agents that may have different capabilities but share aligned
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Figure 1: Motivating Example: Rovers and drones are de-
ployed to find excavation sites in a remote environment. A
rover can mark a site that a drone must then confirm and
communicate to a ground station. [A] The drone starts its
search after the rover has marked a site and left (no synergy).
[B] The drone learns to loosely follow the rover to locate and
confirm a marked site (partial synergy). [C] The rover and
the drone learn to team up and navigate together leading to
efficient search (full synergy). Our method equips agents to
find such valuable inter-agent synergies for robust teaming.

objectives.) Figure 1 highlights the importance of forming asym-
metric synergies in a multiagent system.

In contrast to traditional learning methods, Quality-Diversity
(QD) methods shift the focus from finding one optimal policy to
finding several diverse policies [20, 23]. This shift of focus is crucial
for learning in asymmetric settings as it offers a potential solution
for learning complementary policies. In their most general form,
QD methods follow a two-step iterative process: 1) Mutating a pop-
ulation of policies to create diversity; and 2) Cataloging and refining
the population by projecting it in a behavior space [27]. However,
in multiagent settings, exhaustively exploring the behavior space
of policies is often intractable (since the joint space is a function of
the action space of all agents).

Recent work has shown success in using a hierarchical approach
to transform the behavior space into smaller sub-spaces that makes
the diversity search tractable by filtering regions that yield good
team performance [6]. However, filtering the behavior space condi-
tioned on the team performance can lead to over-specialization of
policies and inter-agent synergies that limits their ability to adapt
to new tasks.

This work introduces Asymmetric Island Model (AIM), a multia-
gent learning framework that enables asymmetric agents to learn
diverse synergies required to operate in teams on a variety of tasks.
AIM leverages a combination of gradient-based QD and gradient-
free evolutionary optimization with a migration strategy that al-
lows both processes to converge to policies that produce good team



behaviors. The QD process allows agents to learn primitive agent-
specific behaviors and explicitly focuses on improving the diversity
in the population of agent policies, whereas the evolutionary opti-
mization process evolves populations of teams to improve fitness
across a spectrum of team tasks. Migration of policies from the
best performing teams to the QD process biases its search towards
regions of the policy space that yield useful team policies. Similarly,
the replacement of low fitness teams with the policies from the QD
process allows the injection of diversity into teams.

The allocation of policies from the QD process is governed by
a softmax distribution that is updated via a gradient to maximize
the performance of the QD population across the team tasks. The
competitive pressures arising from the changing population sizes of
the asymmetric agent classes on the different team tasks, drives the QD
process to explore regions of the policy space that yield complementary
synergistic behaviors that can be generalized across tasks.

We show the effectiveness of learning with AIM in several sce-
narios created in a remote habitat problem in which agents of three
distinct classes must work together to find and excavate regolith.
The ability of our method to learn generalizable synergies is high-
lighted in an experiment that evaluates teams on an unseen task.

2 BACKGROUND AND RELATEDWORK
2.1 Cooperative Multiagent Learning
A fundamental problem that makes learning challenging in multia-
gent settings is the credit assignment problem: agents must deduce
the contribution of their actions from a single metric of team per-
formance [11, 26]. Methods based on reward decomposition such as
Learning Individual Intrinsic Reward (LIIR) [7] utilize a linear com-
bination of a parameterized intrinsic reward and the team reward
to facilitate learning [8]. However, to ensure alignment between
the two rewards, the intrinsic reward is updated based on a gra-
dient from the team reward which makes this difficult to scale to
problems with sparse team rewards. Multiagent DDPG [16] also
partially addresses this problem by using a centralized critic that
optimizes joint actions for all agents in the system. Like LIIR, it also
relies on a dense team reward and can become intractable as the
number of agents increases.

Multiagent Evolutionary Reinforcement Learning (MERL) com-
bines gradient-based learning on an agents-specific reward with an
evolutionary algorithm (EA) that maximizes the team reward. By
applying selection pressure on policies optimized for agent-specific
rewards, MERL ensures alignment [17]. However, its shared replay
buffer architecture limits its application to homogeneous agents.

2.2 Learning Diversity
Quality-Diversity (QD) methods [19] offer a solution to learning
diverse policies in multiagent systems that require agents to operate
with asymmetric agents and tasks. QD methods can be described
as iterative processes that mutate policies in a population and or-
ganize them in a behavior space for refinement. Because defining
the behavior space requires significant insight into the problem,
recent methods [4, 5] have used dimensionality reduction methods
to infer the behavior space from the latent space of the policy pop-
ulation. In multiagent settings, the behaviors space is a function of
the number of agents and their action spaces – making exhaustive

exploration intractable. Multiagent Coevolution for Asymmetric
Agents (MCAA) alleviates this problem by filtering the behavior
space into smaller sub-spaces that can yield policies that work
well in teams [6]. The filtering is determined by the team task and
therefore requires repeated filtering and re-learning in response to
changes in the task and team dynamics. In contrast to QD, methods
such as Malthusian RL and Minimal Criterion Coevolution [3, 13]
implicitly maximize the diversity in a population via resource lim-
itation. While both methods promote the discovery of synergies,
the synergies are largely task dependent (agent-task relationships).
The goal of our method is to learn inter-agent synergies that can
be generalized across a wide spectrum of tasks.

3 ASYMMETRIC ISLAND MODEL
Asymmetric Island Model (AIM) is a multiagent learning frame-
work that leverages a combination of agent-specific and team-wide
objectives to produce teams of asymmetric agents (agents with dif-
ferent capabilities and objectives) that learn diverse agent synergies
required to cooperate on a variety of tasks. AIM produces a set of
"islands" on which agents are trained on agent-specific tasks and a
set of "mainlands" on which teams of agents are trained to optimize
team tasks. Figure 3 provides a high level overview of AIM.

On each island, a Quality-Diversity (QD) process maintains a
diverse population of agents of a specific class, trained to maxi-
mize an agent-specific reward. This allows agents of each class to
learn primitive behaviors that can be potentially useful on the team
tasks. Figure 2 shows the learning process on an island of rovers.
Each mainland represents a distinct team task and maintains a
population of teams (groups of policies) that is optimized using an
evolutionary algorithm (EA). Each island learns a softmax distribu-
tion that dictates the allocation of its population to the mainlands
(team tasks). Periodically, policies from the islands are sampled and
sent to the mainlands (allocated to the mainlands using the softmax
distribution of each island) to replace the lowest performing teams.
This migration of policies allows AIM to inject diversity acquired
using QD to the team tasks. Similarly, policies that are part of the
best performing teams on the mainlands are sent to their respective
islands in-order to bias the diversity search process towards regions
of the policy space that yield good team behaviors.

The softmax distributions on each island is updated using a gradi-
ent rule to maximize allocation to mainlands on which the policies
of that island get the highest team reward. The competitive pressure
created by the allocation of island populations to the mainlands
forces each agent class (island) to learn complementary policies
that can be generalized across different tasks (mainlands).

3.0.1 Diversity Search on Islands. The QD process on the islands
progresses as follows: Each agent class is assigned to a separate
island. A population of policies (neural networks) is initialized for
each island. The distribution of the population of each island 𝑖 to
the mainlands is defined as a softmax 𝜇𝑖 over a weight vector 𝜔𝑖 .
Every island starts by performing 𝑁 iterations of the QD process
in parallel (algorithm 1, lines 2-3). On Island 𝑖 , a random policy 𝜋
is sampled from the current island population 𝑝𝑜𝑝𝑖 (line 4). The
policy is mutated (by perturbing the weights of the neural network;
line 5), then evaluated in the environment (line 6). The weights
of the mutated policy 𝜋′ are then updated using PPO (line 7) [24],



Figure 2: Quality-Diversity (QD) optimization on an Island.
Agents (policies) are trained on an agent-specific task (A).
Agent-specific data collected from the evaluation becomes
part of a dataset (B) that is used to train a dimensionality
reduction method (C). The resultant latent space is used as
the behavior space which is then filled using QD bymutating
the existing policies (D). The process then repeats by training
the mutated policies (A).

the policy is added to the island population (line 8) and agent-
specific data 𝜏 collected from the evaluation becomes part of the
dataset used to train a dimensionality reduction (DR) method (line
9). The resultant of the DR is a latent space that is used as the
policy space for the agents [5]. Any agent-specific data that is
appropriate for the task can be used as the dataset. Previous works
have successfully used end effector positions for a robotic arm [5],
list of (𝑥,𝑦) coordinates and agent-specific metrics like average
speed [6] as the agent-specific data to learn a policy space. The data
used by our experiments is described in section 4.3.2.

After the 𝑁 island iterations, the updated dataset is used to train
the DR method which yields an updated latent space of policies for
each island (algorithm 1, line 11). The policies on each island are
then projected in this new latent space (using their corresponding
data 𝜏 ) to discard policies that are too close in the space (lines 12-13).

Algorithm 1: Islands (agent-specific tasks)
1 Function islands(𝑝𝑜𝑝𝐼 :|𝐼 | Populations):
2 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to 𝑁 do
3 Do in parallel for island 𝑖 ∈ 𝐼
4 sample policy 𝜋 ∈ 𝑝𝑜𝑝𝑖
5 𝜋′ = mutate(𝜋 ) // perturb policy weights

6 𝜏 = rollout(𝜋′, 𝑟 ) // with agent-specific reward 𝑟

7 Update 𝜋′ using PPO // update policy 𝜋 ′
8 𝑝𝑜𝑝𝑖 ← 𝑝𝑜𝑝𝑖 ∪ 𝜋′ // add to island population

9 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑖 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑖 ∪ (𝜏, 𝜋′)

10 foreach island 𝑖 ∈ 𝐼 do
11 train_DR(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑖 ) // update latent space

12 foreach policy (𝜏, 𝜋) ∈ 𝑝𝑜𝑝𝑖 do
13 DR(𝜏) // project to latent space

Algorithm 2:Mainlands (team tasks)
1 Function mainlands(𝑇𝑀 :|𝑀 | populations of |𝑇 | teams):
2 Do in parallel for mainland𝑚 ∈ 𝑀
3 𝑇 ← 𝑇𝑚 // Teams for mainland 𝑚

4 for 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to 𝑁 do
5 foreach team 𝑡 ∈ 𝑇 do
6 𝜙𝑡 = evaluate (𝑡 )
7 Rank population 𝑇 based on fitness 𝜙0:𝑇
8 𝐸 = 𝑇 [0 : 𝑒] // select first e teams as elites

9 Select the remaining ( |𝑇 | − 𝑒) teams from 𝑇 , to
form set 𝑆 using tournament selection

10 while |𝑆 | < ( |𝑇 | − 𝑒) do
11 crossover random policies {(𝜋𝑥 , 𝜋𝑦 ) |

𝜋𝑥 ∈ 𝐸, 𝜋𝑦 ∈ 𝑆, (𝜋𝑥 , 𝜋𝑦) ∈ 𝐼 }, append to S
12 𝑇 ← 𝑆 ∪ 𝑒

3.0.2 Team Optimization on the Mainlands. Each mainland is as-
signed a distinct team task and is initialized with a population of
teams. Policies are sampled from the softmax distribution of each
island, which allocates a fixed number of policies to each mainland.
Teams are then created on each mainland by randomly grouping
𝑡𝑛 policies. Random grouping ensures that the proportion of each
agent class in a team on a mainland is representative of the propor-
tion of that class’ population that was assigned to that mainland.

Each mainland evolves 𝑁 generations of teams by using coop-
erative co-evolutionary algorithm (CCEA) [21, 22] (algorithm 2).
Teams are evaluated on the mainland task and assigned a team
fitness (lines 5-6). The team population is then ranked (line 7) and
divided into 𝑒 high fitness elite teams (line 8) and (|𝑇 | − 𝑒) lower
fitness teams. The policies from the (|𝑇 | − 𝑒) teams are subjected to
crossover with the policies from the 𝑒 elite teams using tournament
selection (line 9-11). During crossover of two policies (𝜋𝑥 , 𝜋𝑦 ), it
is ensured that they belong to the same island 𝐼 (i.e. they are the
same agent class).

3.0.3 Policy Migrations. After both the island and mainland pro-
cesses have completed𝑁 iterations, it is crucial to share information
between the two processes. Policies from 𝑒 elite teams from all the
mainlands (elites across all tasks) are added to the population on the
islands (algorithm 3, lines 9-10). This migration affects the latent
representation on the islands since the elite mainland policies will
now participate in the island rollouts (algorithm 1, lines 4-6) and
provide data for the dataset (line 11). Ultimately, this biases the
QD process to search policies in the regions of the policy space
that yield high performance team policies. Thus every latent space
update ensures that islands progressively explore the regions of the
policy space that can deliver promising team behaviors.

The weights𝑤𝑖 of the allocation distribution 𝜇𝑖 that gives allo-
cation of island population 𝑝𝑜𝑝𝑖 for each mainland𝑚 is a softmax
𝝁(𝒎, 𝒊) = 𝒆𝒘𝒎,𝒊

∑

𝒋−𝒎 𝒆𝒘𝒋,𝒊 . It is now updated via a gradient rule (equa-
tion 1) to change the allocation of 𝑝𝑜𝑝𝑖 in the direction that max-
imizes the cumulative performance of 𝑝𝑜𝑝𝑖 across the mainlands
(algorithm 3, line 11).



Figure 3: Populations of policies for each asymmetric class are divided into islands. Populations on the islands are trained
to optimize agent-specific rewards and maintain diversity using Quality-Diversity (figure 2). Policies from the islands are
allocated to the mainlands and grouped into teams to create a population of teams on each mainland (a mainland represents a
distinct team task). Teams are optimized to maximize team rewards using an evolutionary algorithm. Periodically (every 𝑁
steps), policies from the best performing teams from each mainland are sent back to the islands to bias the island population
diversity towards good team behaviors, whereas policies from the islands are sampled to create new teams that replace the
lowest performing teams and inject new diversity on the mainlands.

Algorithm 3: Asymmetric Island Model (AIM)
1 Initialize 𝐼 islands, one island per agent class
2 Initialize a population 𝑝𝑜𝑝𝑖 of policies 𝜋 for each 𝑖 ∈ 𝐼
3 Initialize𝑀 Mainlands, one per team task
4 Function AIM(𝐼 :Islands,𝑀 :Mainlands):
5 for 𝑘 ← 0 to∞ do
6 do in parallel
7 𝑃𝑜𝑝𝐼 = islands (𝑃𝑜𝑝𝐼 )
8 𝑇𝑀 = mainlands (𝑇𝑀 )
9 foreach island 𝑖 ∈ 𝐼 do
10 𝑃𝑜𝑝𝑖 ← 𝑃𝑜𝑝𝑖 ∪ 𝑇𝑚,𝑖 [0 : 𝑒]) ∀𝑚 ∈ 𝑀
11 𝑤𝑘+1,𝑖 ← update(𝑤𝑘,𝑖 ) // according to eqn (1)

12 foreach mainland𝑚 ∈ 𝑀 do
/* Replace ( |𝑇 | − 𝑒 ) teams by sampling islands */

13 𝑇𝑚 ← 𝑇𝑚 [0 : 𝑒] ∪ (|𝑇 | − 𝑒) ∼𝑤𝑘+1,𝑖 , ∀𝑖 ∈ 𝐼

𝜔𝑘+1,𝑖 = 𝜔𝑘,𝑖 + 𝛼

|𝑀 |∑︁
𝑚=1
∇𝑤𝜇 (𝑚, 𝑖) (𝑓𝑚,𝑖 − 𝜈𝑙𝑜𝑔𝜇 (𝑚, 𝑖))

 (1)

In equation 1, 𝜔𝑘,𝑖 is the weight vector 𝜔 for island 𝑖 , iteration 𝑘
(algorithm 3, line 5). 𝛼 and 𝜈 are the adaptation and regularization
rates. 𝑓𝑚,𝑖 is the cumulative performance of 𝑝𝑜𝑝𝑖 on mainland𝑚
and 𝑙𝑜𝑔𝜇 (𝑚, 𝑖) is entropy regularization to ensure that mainland𝑚
has a non-zero population of policies from island 𝑖 .

Finally, policies from the islands are allocated to mainlands to
replace policies from the ( |𝑇 | − 𝑒) lowest performing teams using
the updated distributions 𝜇𝐼 (𝜔𝑘+1) (algorithm 3, line 13). This mi-
gration allows the injection of newly discovered diversity from the
islands to the teams on the mainlands.

4 EXPERIMENTAL SETUP
We conduct the following experiments to evaluate the efficacy of
AIM in finding generalizable agent synergies:

(1) Asymmetric Coordination for five distinct scenarios, each
of which provides a unique team challenge

(2) Adaptation to Unseen Tasks to evaluate the performance
of agents on an unseen task.

(3) Correlations Between Behaviors to study observed rela-
tionships between different agent classes in response to the
dynamics of the environment.

4.1 Asymmetric Habitat Problem
We introduce the asymmetric habitat problem, which builds off of
the rover exploration problem [6], in which agents are deployed to
a remote environment to conduct pre-mission activities required
for setting up a habitat. The habitat problem consists of three agent
classes: 1) Rovers with sensing equipment; 2) Excavators with dig-
ging equipment; and 3) Drones with communication infrastructure.
The three classes must operate together to find resourceful dig sites,
excavate regolith and communicate the number of excavated dig
sites back to a ground station.



The rovers are equipped with sensing devices with which they
can locate, visit and mark dig sites. To fully mark a dig site, 𝑐 rovers
must visit them simultaneously. We call 𝑐 the coupling requirement
of a dig site.

Each rover has two distinct sensors: one that captures the density
of excavators, drones and other rovers around it, and the other that
captures the density of marked and unmarked dig sites around it.

𝑆𝑎,𝑞 =
∑︁
𝑗∈ 𝐽𝑞

1
𝑑 (𝑖, 𝑗) (2) 𝑆𝑑,𝑞 =

∑︁
𝑘∈𝐾𝑞

𝑣𝑘

𝑑 (𝑖, 𝑘) (3)

In equation 2, sensor 𝑆 provides a density of agents of class 𝑎 in
quadrant 𝑞 of the environment (for our experiments, the space is
divided into four quadrants, centered around the agent); 𝐽𝑞 is the
set of agents of class 𝑎 in 𝑞, within the agent’s observation radius,
and 𝑑 (𝑖, 𝑗) is the Euclidean distance between the agent 𝑖 itself and
the other agent 𝑗 .

Similarly, equation 3 computes the density of dig sites in quad-
rant 𝑞, within the agent’s observation radius. 𝑣𝑘 represents the
value associated with dig site 𝑘 that will be used to compute the
team fitness (equation 4). 𝑑 (𝑖, 𝑗) is the Euclidean distance between
the agent 𝑖 itself and dig site 𝑘 .

The excavators posses the equipment to visit marked dig sites.
if 𝑐 excavators visit a dig site 𝑑 simultaneously, the dig site is consid-
ered as successfully excavated. Similar to rovers, 𝑐 is the coupling
requirement for the excavators. The excavators are also equipped
with the two density sensors: one for computing densities of the
three agent classes (equation 2) and one for computing densities of
marked dig sites (equation 3).

Drones are equipped with communication infrastructure and
have the ability to communicate excavated dig sites within their
observation radius. The cumulative team fitness will only consider
the excavated sites that are within the observation radii of drones.
Drones have a sensor (equation 2) for computing densities of the
three agent classes and a sensor (equation 3) for computing densities
of marked dig sites.

Finally, the Cumulative Team Fitness is computed using the
following equation:

𝜙 (𝑡) =
∑︁
𝑘∈𝐾

∏
𝑁 (𝑐,𝑘 )𝑣𝑘𝐶𝑘 (4)

In equation 4, 𝜙 (𝑡) is the fitness assigned to a team 𝑡 , 𝐾 is the
set of all dig sites, 𝑁 (𝑐,𝑘 ) is an indicator function that is true if 𝑐
excavators (𝑐 is the coupling requirement) visited the dig site 𝑘
simultaneously, 𝐶𝑘 is an indicator function that is true if dig site 𝑘
was within the observation radius of at least one drone and 𝑣𝑘 is
the value associated with the dig site 𝑘 .

4.1.1 Inter-Agent Relationships. The fitness of a team 𝜙 (𝑡) cap-
tures a successfully executed chain of dependencies between the
agents: 𝑐 rovers marking a dig site by simultaneously vising it (spa-
tial intra-agent coupling) to make it available for the excavators
(temporal inter-agent coupling), followed by the excavators simulta-
neously visiting the marked dig sites (spatial intra-agent coupling),
then followed by the drones spreading around or teaming with
other agent classes (inter-agent spatial and temporal coupling) to
make sure the excavated dig sites are considered (given by the
indicator function 𝐶𝑘 ) for computing fitness 𝜙 (𝑡).

4.2 Compared Baselines
The primary metric for evaluating AIM is the quality of the teams
it can create. To that end, as a quantitative metric we look at the
average team fitness (equation 4) for various scenarios created in the
habitat problem. To highlight AIM’s ability to yield generalizable
agent synergies, we also evaluate the performance of teams using
AIM on new scenarios that were not encountered during training.
Finally, we also inspect the effect of the environment dynamics on
the discovered agent behaviors.

we compare the team fitness on a holdout task against three
baselines, each of which address a particular dimension of the learn-
ing problem: 1) Multiagent Coevolution for Asymmetric Agents
(MCAA), a learning framework that leverages an island model simi-
lar to AIM, but is designed to enable asymmetric agents to discover
specializations required to complete a single team task optimally
[6]; 2) Malthusian Reinforcement Learning (MRL), which drives
populations of agents towards specialization by applying pressure
through changing population sizes [13]; and 3) Multiagent Evolu-
tionary Reinforcement Learning (MERL), a two-tier learning frame-
work that combines gradient-based and gradient-free optimization
for learning cooperative policies with sparse rewards [17].

Our method is designed to combine the strengths of the three
baselines: AIM leverages a gradient-based optimizer for optimizing
agent-specific rewards and an evolutionary algorithm to optimize
teams on the sparse team-wide reward (like MERL), uses an island
model to migrate policies that work well in teams to guide the
diversity search process (like MCAA), and drives the search for co-
operative inter-agent synergies by applying pressure via changing
population sizes (like Malthusian RL). The resultant design of AIM
enables agents to discover diverse inter-agent synergies that can
be generalized to a wide set of team tasks.

4.3 Experimental Parameters
4.3.1 Habitat Environment. Unless specified otherwise, the envi-
ronment is a 2D space of size 60x60 units. The episode length on
the islands and the mainlands is 30 and 80 steps respectively.

Inputs The input to the excavators and drones is a concatenated
vector of 16 density values: four values (one per quadrant) for
three agent classes (equation 2) and four values for marked dig sites
(equation 3) within their observation radius. The input to the rovers
is similar, with four additional density values for unmarked dig sites
(using equation 3), making it a concatenated vector of 20 values. The
observation radius for all three agent classes is randomly assigned
to be between [5, 8] units during initialization.

Action Spaces All three agent classes have two navigational
actions (𝑑𝑥, 𝑑𝑦) ∈ [−2.0, 2.0]2. A dig site is considered as marked
when 𝑐 = 3 rovers visit it together and requires no explicit action.
Similarly, a dig site is considered excavated when 𝑐 = 3 excavators
visit it together.

Rewards The dense agent-specific reward for all three agent
classes is the inverse of euclidean distance from the closest dig site,
given by 𝒓 𝒊,𝒕 = 1

𝒅 ( 𝒊,𝒌 ) , where 𝑑 (𝑖, 𝑘) is the Euclidean distance
between the agent 𝑖 itself and the closest dig site 𝑘 at time step 𝑡 .
This dense reward captures a fundamental skill (visiting a dig site)
that can be potentially useful to all agent classes for the team task.
This reward is used by the Quality-Diversity process on the islands



Figure 4: AIM is trained to produce teams that can perform well across five scenarios (Top row (A-E)). The bottom row shows
the learnt allocation distribution for the three agents classes (F-H) and the average team fitness across the scenarios (I). In
Decay (A), the values of dig sites reduce exponentially. The decay is faster the further they are from the center. Rovers are best
suited to perform in this scenario and makeup over 50% of high performing teams (F). In Volatile (B), the sites stay marked
for only 5 steps and rovers must re-mark them again for excavators. This scenarios sees a majority of excavators in the team
(over 40%) (G) that learn to either follow rovers or spread in the environment to visit sites as soon as they are marked. This
experiment highlights AIM’s ability to produce strong inter-agent synergies and team compositions that adapt to the task.
Section 5.1 describes the performance and distribution of agents across all scenarios in further detail.

in AIM and MCAA, the gradient based training in MERL and as the
reward for agents using Malthusian RL.

The sparse team fitness (equation 4) is used by the evolutionary
algorithm on the mainland(s) by AIM and MCAA, and by the evo-
lutionary optimizer in MERL. The fitness is assigned to a team at
the end of each episode. The number of sites marked by the rovers,
the number of sites excavated by the excavators and the number of
sites communicated by the drones on mainland𝑚 are used as the
cumulative performance 𝑓𝑚,𝑖 for the three classes (in equation 1).

4.3.2 AIM and Baselines. The agent-specific data collected dur-
ing the Quality-Diversity process on the islands are vectors of
(𝑑𝑎,𝑡 , 𝑑𝑘,𝑡 ) tuples for all 𝑡 time steps of the episode. For the habitat
problem, we believe that the distance 𝑑𝑎,𝑡 to the closest agent 𝑎
and the distance 𝑑𝑘,𝑡 to the closest dig site 𝑘 captures the agent’s
inclination towards going to a dig site and teaming with another
agent. For all three classes of agents, we use this data as input to the
dimensionality reduction method on the islands, PCA [5], which
gives us the latent space that is used as the behavior space.

The baselines in section 5.2 use parameters from the original
works [6, 13, 17] unless specified otherwise. AIM, MCAA andMERL
use 𝑁 = 1000 policy updates in their gradient-based process. To
ensure fair comparison with Malthusian RL (MRL), we allow it 2𝑁
v-trace updates for every 𝑁 gradient updates in AIM (to make up
for the evolutionary updates). Every iteration 𝑖 in section 5.2 corre-
sponds to 2𝑁 updates for MRL and 𝑁 updates for other baselines.
Both AIM and MRL use rates 𝛼 = 1𝑒 − 05 and 𝜈 = 0.01 (equation 1)

and the tournament selection (algorithm 2, line 9) is done according
to [18]. The policies on the islands are fully connected feedforward
networks with 16 inputs (20 for rovers), 3 hidden layers (size 32)
with ReLU activations, and two output heads (similar to [17]). Mu-
tation on the islands (algorithm 1, line 5) is applied to a fraction of
the weights (𝑚𝑓 = 0.15) by probabilistically (𝑚𝑝 = 0.9) perturbing
them with Gaussian noise (𝑚𝜎 = 0.1).

5 RESULTS
5.1 Asymmetric Coordination
We start by creating five scenarios in the habitat problem, each of
which demands a different team composition and unique behaviors
from the three agent classes. The goal is two-fold: AIM should
be able discover good team compositions and agents trained with
AIM should be able to learn diverse policies that are specialized
within their own class while still being generalizable across the five
scenarios. The scenarios are shown on the top row of figure 4 (A-E).
The allocation distribution 𝜇 for each agent class is shown on the
bottom row (F-H), while the average team fitness (normalized) on
each of the scenarios is shown in (I). The 𝜇𝑖 for each class 𝑖 is the
learnt distribution used for allocation of the agent population to
the the five scenarios.

In thefirst scenario, "Decay" (figure 4.A), the task is to prioritize
high value dig sites (𝑣𝑘 in equation 4). This is enforced by intro-
ducing a decay function to the value of dig sites (𝑣𝑘,𝑡+1 = 𝑣𝑘,𝑡 ∗ 0.5)
and keeping the episode length relatively small (40 steps). With the



value of unmarked dig sites decreasing every time step, rovers must
be able to navigate around lower valued sites to prioritize high
valued sites. This also implies that rovers are the most important
class in this scenario, which is evident from the 𝜇 for rovers (F),
which shows the highest distribution of rovers (average 11 rovers
per team) on Decay (A). With more rovers to mark high values sites
before they decay, teams on this scenario are able to excavate over
80% of the sites (I).

In the second scenario, "Volatile" (figure 4.B), we limit the du-
ration up to which a marked site stays marked (7 steps), after which
it will need to re-marked by the rovers. While a higher number of
rovers could solve this problem by repeated re-marking, interest-
ingly, we saw a higher distribution of excavators on this scenario
(average 13 excavators vs 5 rovers per team - (G)). We hypothesize
(partially confirmed in section 5.3) that the higher requirement of
rovers on Decay (A), drives the excavators to find diverse strategies
like following rovers, spreading in the environment and camping
in regions of previously marked sites that make them the premier
class for this scenario. Teams are able to excavate over 70% sites (I)
in this scenario.

In the third scenario, "Constrained" (figure 4.C), we halve
the size of the environment to 30𝑥30. The average team size on
this scenario is significantly smaller and the team composition is
fairly uniform (small comparable mean for each class as evident
from F-H) as expected. The average performance of teams on this
task is the highest (I) with teams readily excavating all sites in the
environment.

The fourth scenario, "Sparse" (figure 4.D), doubles the size of
the environment while keeping the number of sites constant, thus
creating a very sparse environment. The drones learn to specialize
in this environment by teaming with the other two classes to en-
sure that the team fitness captures every excavated site (evident in
section 5.3). The 𝜇 for drones (H) also indicates that on an average
every team has 12 drones in this scenario (compared to average 7
rovers and 5 excavators).

Finally, we combine Decay and Volatile by adding decaying sites
that remain marked for 7 time steps to create the fifth scenario,
"Mixed" (figure 4.E). The 𝜇 for each class indicates uniform team
composition on this scenario (average 7 agents per class on each
team - (F-H)). Teams on this scenario are able to excavate over 80%
of the sites (I).

This experiment highlights the effectiveness of AIM in produc-
ing diverse policies for asymmetric agents that foster team work
and generalize across a wide variety of scenarios (over 70% per-
formance across all five scenarios).

5.2 Adaptation to Unseen Tasks
While AIM’s primary objective is to enable agents to learn diverse
generalizable policies, both MCAA and Malthusian RL are designed
to specialize policies for one task. This difference has potential
consequences on how they compare on tasks that they have been
trained on as well on unseen held-out tasks.

5.2.1 Training on the Decay scenario. We first train all the baselines
on Decay (section 5.1). Figure 5.A shows the performance of AIM
and the baselines on Decay. We evaluate two variants of AIM, both
of which use three mainlands: 1) AIM (S=1) in which all three

mainlands are assigned Decay; and 2) AIM (S=3) in which the first
mainland is assigned Decay while the other two are assigned the
Constrained and Sparse scenarios (section 5.1). The is to allow
AIM (S=1) to specialize to one task like the baselines while AIM
(S=3) has to learn to generalize policies across three tasks. For AIM
(S=1) and Malthusian RL, we report the average fitness on the best
performing mainland, whereas for AIM (S=3) the fitness of the
appropriate mainland (Decay or held-out) is reported.

Teams trained with both AIM (S=1) and MCAA are able to exca-
vate over 80% sites with MCAA slightly outperforming AIM (S=1)
(figure 5.A). Because AIM (S=1) has to distribute its best performing
policies across the three mainlands, we believe this gives MCAA
a slight advantage since all its best performing policies are con-
centrated on its single mainland. Teams trained with AIM (S=3)
learn policies to operate on three different scenarios yet are able
to excavate over 70% of the sites and only performs slightly worse
than AIM (S=1) and MCAA.

Because MERL is specifically designed for a single class of agents,
we use the team composition learnt by MCAA (8 rovers, 4 drones,
5 excavators) to train a population of teams with MERL. Although
MERL uses the same agent-specific and team rewards (section 4.3.1)
as AIM andMCAA, it is unable to perform comparably, likely due to
the lack of diversity in the policies. Teams trained with Malthusian
RL (both average and best island performances reported) fail to
learn on Decay. We attribute this to at least two potential reasons:
Malthusian RL disperses its best performing policies on different
islands (similar to AIM (S=3)) and overall lacks diversity in the
populations (like MERL).

5.2.2 Evaluation on a held-out scenario. Now we evaluate the per-
formance on a held-out scenario that none of the methods encoun-
tered during training. We choose Volatile (from section 5.1) as the
held-out scenario. AIM (S=1), (S=3), MCAA and MERL use the same
team composition they learnt for Decay.

Teams evaluated with AIM (S=3) outperform the other methods
significantly and still manage to excavate over 60% sites (figure

Figure 5: Performance of teams trained with AIM and the
baselines on Decay (left), and evaluated on a held-out task
(right). In the Decay scenario, variants of our method for spe-
cialization (AIM(S=1)) and generalization (AIM(S=3) have a
comparable performance to MCAA and outperform Malthu-
sian RL (MRL) and MERL (left). In the held-out task, AIM
(S=3) significantly outperforms the baselines (right). This
highlights AIM’s effectiveness in discovering inter-agent syn-
ergies that can be generalized to unseen tasks.



5.B). The regions of the behavior space (on the islands) that were
explored by AIM (S=3) were a product of searching for diverse
policies that worked across the three scenarios it was trained on.
This enabled teams to leverage generalized synergies to operate
successfully on the unseen task. This is in contrast to MCAA and
AIM (S=1), where the performance significantly reduced because
the policy diversity was coupled to the trained task and failed to
extrapolate when the dynamics of the task changed.

This highlights the ability of AIM to learn diverse policies that
are generalizable across potentially unseen tasks in an environment.

5.3 Correlations Between Behaviors and Tasks
Finally, we take a closer look at some of the behaviors that were
discovered by AIM that allowed different agent classes to learn
specialized behaviors that worked well across a variety of tasks
(section 5.1). In particular, we are interested in inspecting how
the simultaneous exploration of behavior spaces, the inter-agent
coupling, and the competitive pressure arising from the distribution
of populations to the tasks affected the behaviors they learnt.

Figure 6.A shows the correlation between the size of the envi-
ronment and the average distance between drones and other agent
classes. In the habitat problem, rovers have spatial intra-agent cou-
pling wherein they are required to team with other rovers to mark a
dig site. The drones on the other hand have an inter-agent coupling:
they must try and keep as many marked dig sites in their observa-
tion radius as possible so that they are counted in computing the
team fitness once the excavators visit them. Drones thus have a
nuanced relationship with both the task (dig sites) and other agents
(rovers and excavators) that they must learn to balance. Figure 6.A
indicates that for smaller environments (size less than 40 units),
drones seem more closely linked to the task (dig sites) and prefer to
spread in the environment (observed in Decay) or camp around dig
sites (observed in Volatile). As the size of the environment decreases,
so does the likelihood of finding dig sites (as evident in Sparse). The
camping and spreading strategies become less effective and drones

Figure 6: [A] As the size of the environment increases, drones
learn to team upwith rovers and excavators (reduced average
distance) in favor of strategies like camping and spreading
observed in section 5.1. [B] With increasing density of dig
sites, excavators learn to team up with rovers. This trend
reverses for very high density environments in which rovers
often revisit already marked dig sites.

learn to follow rovers and excavators instead, as is evident from
the decrease in the average distance.

A similar inter-agent and inter-task coupling is observed be-
tween the excavators, rovers and the dig sites. Figure 6.B shows the
correlation between the density of dig sites in the environment and
the average distance between excavators and rovers. For sparser
environments, the excavators seem to spread in the environment
(contrasting the trend seen with drones), whereas with the rise
in density, the overall inclination to team with rovers seems to
increase (figure 6.B: density ∈ [15, 24]). Interestingly, this trend
reverses again as the excavators seem to adopt a coverage strategy.
We believe that a higher density might require rovers to repeatedly
navigate back to already visited dig sites for remarking (in case of
Volatile) which makes the excavator-site (agent to task) relationship
more viable than the excavator-rover (inter-agent) relationship.

AIM’s ability to train asymmetric classes in concert offers a rich in-
sight into the intra, inter-agent and agent-task relationships required
to coordinate and form synergies.

6 DISCUSSION
This work introduces AIM, a multiagent learning framework that
enables asymmetric agents to learn diverse synergies required to
operate in teams on a variety of tasks. AIM combines Quality-
Diversity (QD) and evolutionary optimization with a migration
scheme that allows it to find policies that are simultaneously diverse
and produce good team behaviors.

QD allows policies to learn primitive agent-specific behaviors
and explicitly maintains high diversity in the populations, whereas
the evolutionary process evolves populations of teams to improve
fitness across a spectrum of tasks. Migration of policies from the
best performing teams to the QD process biases its search towards
regions of the policy space that produce useful team policies. Simi-
larly, replacing the lowest performing teams with the policies from
the QD process injects diversity into teams.

The allocation of policies from the QD process is governed by
a softmax distribution that is updated via a gradient to maximize
the performance of the QD population across the team tasks. The
competitive pressures arising from changing population sizes of the
asymmetric agent classes on the different team tasks drives the QD
process to explore regions of the policy space that allow agents to learn
complementary synergistic behaviors with other agents that can be
generalized across tasks.

The primary objective of AIM was to empower agent classes
to learn generalizable synergies. This is often useful and specially
desirable for unexpected changes in the environment or rapid adap-
tation to new tasks (AIM succeeds at this: figure 5.B). At the same
time, there is certainly room for learning nuanced behaviors re-
quired to specialize in just one task (figure 5.A). In future work, we
will explore extensions of AIM that can adaptively balance between
generalization and specialization.
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