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Abstract. To coordinate in multiagent settings characterized by
multiple objectives, asymmetric agents (agents with distinct capabil-
ities and preferences) must learn diverse behaviors to balance trade-
offs between agent-specific and team objectives. Hierarchical meth-
ods partially address this by leveraging a combination of Quality-
Diversity methods that illuminate the behavior space and evolution-
ary algorithms that use non-dominated sorting over the explored be-
haviors to improve coverage in the objective space. However, op-
timizing diverse behaviors and trade-offs in isolation is susceptible
to producing egocentric behaviors that favor agent-specific objec-
tives at the cost of team objectives. This work introduces the Multi-
Objective Informed Island Model (MOI-IM), an asymmetric multia-
gent learning framework that fosters diverse behaviors and rich inter-
agent relationships, necessary to balance potentially conflicting and
misaligned objectives. An evolutionary algorithm improves cover-
age in the objective space by evolving a population of teams, while a
gradient-based optimization infers and progressively explores the be-
havior space by fluidly adapting search to regions that produce poli-
cies with non-dominated trade-offs. The two processes are coupled
via shared replay buffers to ensure alignment between coverage in
the behavior and objective space. Empirical results on an asymmet-
ric multi-objective coordination problem highlight MOI-IM’s ability
to produce teams that can express diverse trade-offs and robust rela-
tionships required to balance misaligned objectives.

1 Introduction
Multiagent learning is a ubiquitous and important paradigm that
characterizes many real-world problems such as healthcare coordina-
tion [24], air traffic control [17, 36], and robotic automation [20, 23].
Success in such settings requires asymmetric agents (agents of dis-
tinct classes with unique capabilities and objectives) to not only learn
good actions, but to learn good joint actions [3]. The problem is ex-
acerbated when agents have diverse and potentially conflicting ob-
jectives that must be balanced with the team objectives [34, 21].

Quality Diversity (QD), unlike traditional optimization methods,
facilitates diversity-first optimization by explicitly developing a pop-
ulation of diverse and high-performing policies, archived in a be-
havior space [30]. Exploration of behavioral diversity is maximized
by genetic algorithms that repeatedly sample, mutate and catalogue
policies to improve coverage in the behavior space [7]. However, ex-
haustive search in the behavior space is intractable and often unnec-
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essary in multiagent settings: exploration should focus on regions of
the behavior space which have the capacity to produce cooperative
policies. Informed exploration is therefore pertinent for effectively
learning a repertoire of diverse policies [5].

Recent developments in multiagent multi-objective QD methods
have utilized hierarchical methods that make exploration tractable by
transforming the behavior space into smaller class-specific subspaces
[10]. However, conducting diversity search across disjoint subspaces
opens the possibility for agents to learn egocentric behaviors that fa-
vor their individual class-specific objectives at the cost of team objec-
tives. When class objectives are only aligned partially, coordination
between asymmetric agent classes becomes challenging [11].

This work introduces Multi-Objective Informed Island Model
(MOI-IM), a multiagent multi-objective learning framework that pro-
duces teams of asymmetric agents capable of expressing diverse
trade-offs by balancing individual and team objectives. MOI-IM uses
a combination of gradient-based and gradient-free optimization with
shared replay buffers and behavior archives that allow them to con-
verge simultaneously. An evolutionary algorithm evolves a popula-
tion of teams (groups of policies) using non-dominated sorting to
maximize team fitness and coverage of trade-offs in the objective
space. The experiences collected by teams are stored in replay buffers
that are utilized by a combination of gradient-based methods to: 1)
train an autoencoder to infer a behavior space; 2) reinforce class-
specific preferences to maximize individual objectives; and 3) per-
form mutation in the behavior space using an evolution strategy.

Periodically, diverse policies produced by the gradient-based op-
timization are added to the shared archives. The evolutionary algo-
rithm samples policies from the shared archives to replace the low-
fitness teams, thus allowing diverse policies to permeate the team
population. Similarly, the experiences collected by the evolutionary
algorithm will feed into the gradient-based optimizers through the
shared replay buffers and directly guide the diversity search process
by shaping the behavior space.

Experiments in an asymmetric multi-objective exploration prob-
lem highlight MOI-IM’s ability to produce high-fitness teams that
express diverse trade-offs with high coverage in the objective space
and specialize when the desired trade-off is known a priori.

2 Background

Multiagent Learning A primary difficulty of learning to coordi-
nate in a multiagent setting is the credit assignment problem: agents



in a team must learn to isolate their impact on the team using a
single sparse feedback [25]. Reward shaping methods partially ad-
dress this challenge by decomposing the sparse feedback into dis-
tilled “stepping stone" rewards that reinforce promising individual
actions which lead to sub-goals or salient events [37, 26]. However,
designing shaped rewards often requires intimate knowledge of the
problem, and careful consideration to avoid potential misalignment
between rewards [13].

Recent advances in hierarchical learning architectures have led to
the development of population-based methods that utilize a combi-
nation of gradient-based and gradient-free optimization to address
the two distinct aspects, learning along the physical and social di-
mension, independently [18, 2]. A gradient-based method optimizes
primitive agent-specific behaviors while the gradient-free method en-
courage cooperative planning and decision-making [19, 12]. Malthu-
sian Reinforcement Learning (MRL), for instance, promotes behav-
ior specialization by applying selection pressure to a population of
agents that must learn primitive behaviors which are required to
cooperate effectively [22]. However, in multiagent multi-objective
problems, isolating the two learning dimensions can lead to egocen-
tric behaviors that inhibit teams from expressing diverse trade-offs
between potentially misaligned team objectives [10, 27].

Quality Diversity (QD) is a family of diversity-first methods that
shift the traditional goal of optimizing a single behavior to maximiz-
ing the coverage of behaviors in a behavior space [30]. In its most
elementary form, QD follows a two-step iterative process: 1) Sample
a policy from a population of policies and mutate it; 2) Archive the
mutated policy in the behavior space (using tournament if a policy al-
ready exists in that region) [5]. In spite of its success in producing a
diverse repertoire of behaviors for a wide range of single-agent prob-
lems, applying it to multiagent problems remains challenging due to
its reliance on the behavior space definition [31, 16]. In multiagent
settings, suitable definitions such as the “inclination to coordinate"
are difficult to formalize. Recent developments in QD have partially
addressed this by utilizing dimensionality reduction methods to in-
fer the behavior space from a population of policies [7]. However,
effectively guiding the diversity search and behavior space inference
through a sparse team objective remains challenging [10].

Evolution Strategies are a family of gradient-based methods that
update a parameterised distribution over solutions in the direction
that maximizes their fitness [4]. Our work uses a specific variant
from this family, OpenAI-ES (henceforth abbreviated to ES), that
updates the parameters of an isotropic multi-variate Gaussian distri-
bution with mean θ and variance σ, using approximate natural gra-
dients [35]. A population of Z solutions is evaluated on its k-nearest

neighbor novelty score η(θ) = 1
K

K∑
k=1

||dθ − dk||2 to get a gradient

estimate that maximizes η. Algorithm 1 provides an overview of ES
with the novelty-based fitness η.

Algorithm 1: ES Gradient Step (adapted from [35])

1 Function ES_step(F : objective, θt: solution):
2 ϵ1,..., ϵZ ∼ N (0, I)
3 ηi = η(θt + σϵi), for i = 1 to Z
4 θt+1 ← θt + λ 1

Zσ

∑Z
i=1 ηiϵi

5 return θt+1

3 Multi-Objective Informed Island Model
The Multi-Objective Informed Island Model (MOI-IM) is a multi-
agent learning framework that produces teams of cooperative asym-
metric agents (agents with different capabilities and preferences) that
exhibit diverse trade-offs to balance individual and team objectives.

Figure 1 presents a high-level outline of MOI-IM. An island i is
initialized for each agent class with a unique utility function ui which
describes a class’s preferences: a scalarization that indicates how the
class values each team objective. An island is also assigned a ran-
domly initialized population of policies popi, a replay bufferRi and
two empty archives AE

i and AN
i (algorithm 2, lines 1-4).

At a high-level, MOI-IM progresses as follows: M teams of S
agents each, are created by sampling from populations popi∈I using
a categorical distribution with probabilities given by a softmax µ over
weights wI (algorithm 2, line 6). The I weights over the islands dic-
tate the team composition and will be adapted as learning progresses.
The T teams are evolved on the mainland using an evolutionary algo-
rithm and experiences collected during their evaluation are stored in
replay buffersRI (line 7). The islands will use these experiences to:
1) train an autoencoder to infer a behavior space; 2) reinforce class-
specific preferences; and 3) conduct informed diversity search (line
11). The weights w are updated using a gradient rule to shift team
composition in the direction that maximizes the cumulative fitness fi
for each agent class (line 12). Finally, e elite teams are retained and
the remainder are replaced by sampling teams from the elite archives
AE

i∈I (lines 13-14). This process is repeated until a convergence cri-
terion is met (adequate coverage in the objective space or sufficiently
high team fitness for a given trade-off — section 3.2.2).

Algorithm 2: Multi-Objective Informed Island Model

1 Initialize I islands, one island per agent class
2 Initialize I initial populations of policies popi∈I

3 Initialize archives AE
i and AN

i for each i ∈ I
4 Initialize I empty cyclic replay buffersRi∈I

5 Function MOIIM(I:Islands, M :Mainland):
6 T = [T1,T2, ...,TM ] ∼ CategoricalSpopi∈I (µ)
7 T,RI = mainland(T,RI) // initial buffers
8 for k ← 0 to∞ do
9 do in parallel

10 T,RI = mainland(T,RI) ∀i ∈ I
11 islandi(Ri, [AE

i ,AN
i ]) ∀i ∈ I

12 w ← w + α
[∑I

i=1∇wµ(i)(fi − ν logµ(i))
]

13 T ′ = [T ′
1, ...,T

′
(|T |−e)] ∼ CategoricalSAE

I
(µ)

14 T ← T [0 : e] ∪ T ′

3.1 Mainland: Team Optimization

The goal of the mainland process is to evolve teams of agents (groups
of policies) to maximize coverage of trade-offs in the objective space.
This is achieved by adapting key components from NSGA-II [9]. In
each generation, teams t ∈ T are evaluated on team objectives and
their experiences are collected in replay buffers Ri∈I (algorithm 3,
lines 2-3). The fitness vector Φt for each team t ∈ T represents a
trade-off in the team objectives. Teams are sorted into Pareto fronts
using non-dominated sorting and crowding distance using Φt (lines
4-5). e highest-fitness teams from the top fronts are retained for the



Figure 1. MOI-IM Overview: Each island is a combination of a
gradient-based optimization, behavior space inference and diversity search
process for an asymmetric agent class (figure 2). A mainland represents an
evolutionary optimization over a population of teams (groups of policies),

that are evolved using non-dominated sorting and crowding distance to
maximize coverage of trade-offs in the objective space. After N learning

updates, the experiences collected on the mainland are used on the islands to
progress diversity search, infer an updated behavior space, and reinforce

class-specific objectives. Diverse policies from the islands are then sampled
on the mainland using a softmax distribution µ to inject diversity in the

mainland evolutionary optimization.

next generation as elites (line 6). If a Pareto front has more than e
teams, the crowding distance is used to break ties.

Algorithm 3: Mainland (NSGA-II, adapted from [9, 10])

1 Function mainland(T : teams,RI : Replay Buffers):
2 for generation← 0 to N do
3 Φt,RI = evaluate(t) | ∀t ∈ T
4 T ← sortΦ(T ) // Non-dominated sort
5 C ← crowding_distance(T )
6 E = T [0 : e] // top e teams using C
7 Create set S = ∅, using binary tournament:
8 while |S| < (|T | − e) do
9 t← crossover(tx ∼ U(E), ty ∼ U(T − E))

10 t← mutate(t) // perturb weights
11 S← S ∪ t
12 T ← S ∪ E
13 add_to_archives(T [0 : e]i, [AE

i ,AN
i ]) ∀i ∈ I

Binary tournament is used to apply mutation and crossover to the
policies from the remainder of the teams (algorithm 3, lines 7-11). A
single-point crossover is performed by uniformly sampling policies
from low-fitness and elite teams to create new policies that have a
higher likelihood of succeeding [32]. Weights of the new policies are
perturbed by applying Gaussian noise (equivalent to a polynomial
mutation [8]). The mainland, over N generations, will gradually im-
prove the fitness of teams and coverage in the objective space.

3.2 Islands: Informed Diversity

An island is a set of optimization processes for each agent class
that reinforces class-specific preferences, infers and performs search
through the behavior space. Figure 2 presents an outline of an island.

Figure 2. Island Overview: Trajectories of experiences collected on the
mainland are used as a dataset to train an autoencoder (A-C). The resulting

latent space is used as the behavior space for archiving elite (AE ) and novel
(AN ) behaviors. Experiences are sampled by a policy gradient to reinforce

class-specific preferences (A-B). An evolution strategy samples a policy
from the elite archive (AE ) and takes N gradient steps in the novelty

archive (AN ) to maximize its k-neighbor novelty score η (D-E). Finally,
policies from (B) and (E) are added to the elite archive which will be used to

sample policies into teams on the mainland.

3.2.1 Behavior Space Inference

The trajectories of experiences collected during the evolutionary pro-
cess on the mainland in replay buffersRi∈I , are used as a dataset on
each island to train an autoencoder [7]. The dimensionality reduction
results in a latent space that captures the variance in policies of each
class [1]. The latent space is used as a behavior space to conduct
diversity search [10, 7]. An island imaintains two behavior space in-
stances: an elite archiveAE

i that catalogues high-fitness policies that
are currently participating in the evolutionary process on the main-
land, and a novelty archive AN

i that retains all policies that have
historically participated on the mainland (algorithm 4, line 2).

Algorithm 4: Island

1 Function island(Ri: replay buffer, Ai: archives):
2 AE

i ,AN
i ← update_projection(Ri)

3 θn ∼ χ // strategy χ from section 3.2.2
4 do in parallel for N
5 θn ← ES_step (η, θn)
6 θpg ← ddpg(Ri)

7 add_to_archives([θpg, θn], [AE
i , AN

i ])

3.2.2 Informed Diversity Search

Traditional QD methods improve coverage in the behavior space by
uniformly sampling and mutating policies [33]. However, exhaustive
coverage of the behavior space is intractable in multiagent settings
and often unnecessary: it is pertinent to focus on specific regions of
the behavior space that yield policies capable of working coopera-
tively in teams [10]. We introduce two crucial changes that facilitate
an informed search. First, instead of uniform sampling, a policy θ is
sampled from a biased probability distribution that underscores θ’s
contribution to the teams on the mainland (algorithm 4, line 3). We
consider several sampling strategies, χ, to assess θ’s contribution:



1. Uniform Sampling: On an island i, a policy θ is uniformly sam-
pled from the elite archive AE

i . This strategy encourages uniform
coverage in the behavior space and is traditionally used by QD
methods [33].

χ ∼ Uniform(A) : A = AE
i (1)

2. Uniform Sampling from the Pareto front: policy θ is uniformly
sampled from the subsetAPF of the elite archiveAE

i , which only
contains policies from teams on the Pareto front. This ensures that
policies in high-fitness teams are the focal point of diversity search
(motivated by [39], which suggests that search should be focused
on the elite hypervolume).

χ ∼ Uniform(APF ) : APF ⊆ AE
i (2)

3. Biased Sampling: θ is sampled from a categorical distribution that
favors policies in the elite archive AE

i that maximize the prefer-
ences (utility κi) of agents on island i. This ensures that diversity
search fluidly considers policies that are currently part of high-
fitness teams and maximize the preferences of the agent class.

χ ∼ Categorical( κi(θx)∑
θy
κi(θy)

) | θx, θy ∈ AE
i (3)

κi(θ) =
∑
j∈J

λj
1

|T |
∑
t∈T

Φj(t) (4)

κi(θ) is the weighted scalarization of the J objectives Φ, averaged
over the T teams in which the policy θ participated. The prefer-
ences of agents on island i are given by weights λ.

4. Chebyshev Sampling: Finally, we consider the case when the goal
is to evolve teams of agents to maximize fitness for a desired trade-
offZ that is known a priori. The weighted scalarization κi in equa-
tion 4 is replaced by the Chebyshev method scalarization κi:

κi(θ) = maxj∈J {λj
1

|T |
∑
t∈T

|Φj(t)− Zj |} (5)

The Chebyshev scalarization κi computes the maximum weighted
deviation from the desired trade-off Z (where Zj is the desired
value of the j-th objective) [38]. This encourages diversity search
to actively explore diverse behaviors that can minimize the devia-
tion from the desired trade-off.

Second, instead of applying Gaussian or polynomial mutation
(contrast to [10]), NS-ES with a novelty objective is used to take
N gradient steps towards a new policy θ in the behavior space (al-
gorithm 4, lines 4-5). The two changes ensure a systematic search
through the behavior space on each island, which adapts to the
progress made on the mainland.

3.2.3 Reinforcing Class-Specific Preferences

Experiences collected in the replay buffers RI on the mainland are
exploited on the islands to train a policy θpg using Deep Determin-
istic Policy Gradient (DDPG) [23]. On each island i, DDPG samples
mini-batches from the corresponding replay buffer Ri and uses them
to sample a policy gradient that maximizes a scalarized dense re-
ward function (algorithm 4: line 4, 6). This has the benefit of training
agents with primitive class-specific behaviors which maximize their
preferences (given by weights λ), that can then be utilized for learn-
ing higher-level cooperative behaviors on the mainland [2].

3.3 Alignment and Archiving

As the mainland and the islands serve unique and potentially orthog-
onal optimization roles, it is pertinent that information be shared be-
tween them to ensure aligned optimization. This is achieved by shar-
ing replay buffers and behavior archives.

Following N generations of evolution on the mainland, policies
from the elites teams on the mainland are added to the correspond-
ing elite and novelty archives on each island (algorithm 3, line 13).
These high-fitness policies will be sampled on the islands subse-
quently (with a higher likelihood for biased sampling strategy χ).
Moreover, the experiences collected on the mainland will shape the
behavior space (algorithm 4, line 2) and thus directly influence NS-
ES. After N gradient updates on the island, policies θn and θpg are
added to the elite and novelty archive (algorithm 4, line 7).

Weights w of the softmax function µ(w)i = ewi∑I
k=1

e
wj are up-

dated using gradient ascent to update the team sampling distribution
in the direction that maximizes the total fitness fi∈I of each agent
class (algorithm 2, line 12). The entropy regularization logµ(i), con-
trolled with the regularization rate ν, ensures that a non-zero number
of agents from each class (island) participate in teams. To introduce
the progress made on the islands to the mainland, (|T |−e) lowest fit-
ness teams are replaced by sampling policies from the elite archives
AE

i∈I into new teams using µ (lines 13-14).
The use of a distinct elite and novelty archive on each island is

crucial: policies on an island i are sampled from the elite archive
AE

i , whereas the NS-ES steps are performed in the novelty archive
AN

i to ensure that novel policies are indeed novel from the policies
that have already participated on the mainland previously [14].

4 Experimental Setup

Multi-Objective Cooperative Mining: We introduce cooperative
mining, an asymmetric bi-objective problem that builds on motifs
from several exploration challenges [2, 10, 19, 22]. Agents in the
cooperative mining problem are deployed to a remote environment
where they must cooperatively prospect, extract and refine ores. Min-
ing responsibilities are shared between three agent classes: 1) Rovers
that must first prospect and mark ores suitable for extraction; 2) Ex-
cavators that can then extract marked ores; and 3) Refiners that must
then purify the mined ores. Deposits of two distinct ores, iron and
calcite, are distributed uniformly throughout the environment.

Rovers can successfully mark an ore deposit, if c rovers visit it
simultaneously (we call c the coupling constraint). Similarly, c exca-
vators are required to mine an ore and c refiners to purify it. Agents
are equipped with two distinct sensors: one that captures the density
of ore deposits, and the other to capture the density of agents in their
observation radius.

So,q =
∑
k∈Kq

vk
d(i, k)

(6) Sa,q =
∑
j∈Jq

1

d(i, j)
(7)

In equation 6, sensor S captures the density of an ore o (iron or
calcite) in quadrant q (the observation is dividend into four quad-
rants, centered around the sensing agent i; motivated by [19]), within
the sensing agent i’s observation radius. Each ore deposit k has a
value vk associated with it for successfully mining and purifying it.
Similarly, equation 7 computes the the density of agents of class a in
quadrant q. Jq is the set of agents in quadrant q within a’s observa-
tion radius, and d(i, j) is the Euclidean distance between the sensing
agent i and the other agent j.



Team Fitness: Cooperative mining has two objectives: purifying
iron and calcite ores. The fitness of a team Φt is a vector, formally
defined as:

ϕ0 =
∑

k∈Ki

∏
vkI(c, k)

ϕ1 = |Kc| · e
−|Kc|
ψ Kc ∀k ∈ Kc : I(c, k) == 1

(8)

In equation 8, the reward ϕ0 for purifying an iron ore k ∈ Ki

increases linearly while the reward ϕ1 for calcite ore k ∈ Kc is
modeled as a curve that plateaus after ψ calcite ores have been puri-
fied. I(c, k) is an indicator function that is set to true if c excavators
or drillers visited the ore k simultaneously, followed by c refiners.

Class-Specific Utilities: A utility function ui for each agent class
i defines their preference for visiting iron and calcite ores.

ui = λ0 ·
∑
k∈Ki

vk + λ1 ·
∑
k∈Kc

vk (9)

The utility function ui is used on the islands as a dense reward to
reinforce class-specific primitive behaviors (such as independently
visiting an ore since ui is not dependent on the coupling constraint
c) using DDPG (section 3.2.3). The weights λ for each class specify
preferences that are also used for sampling from the elite archive on
each island (equations 3, 5)

Agent Relationships: The team fitness Φt (equation 8) under-
scores the rich inter and intra-class dependencies required to succeed
in the cooperative mining problem. Agents must learn to maximize
both the team objectives, ϕ0 and ϕ1 , and their class-specific utilities.
The coupling constraint c enforces intra-class dependencies, while
the ordered marking, extraction and refining imposes strong inter-
class dependencies.

4.1 Compared Baselines

MOI-IM’s primary goal is to produce cooperative teams that can ex-
press diverse trade-offs. To that end, we gauge the quality of teams
based on their fitness (equation 8), coverage of trade-offs in the ob-
jective space, adaptation in team composition, and the behavioral di-
versity measured using expected action variance [28]. We also em-
pirically evaluate the effect of various sampling strategies (section
3.2.2) by examining the distribution of policies in the inferred be-
havior space. Finally, we investigate if informed diversity search can
lead to high-fitness regions in the behavior space by inspecting the
gradient steps taken by diversity search using a phylogenetic tree.

The team fitness, Pareto fronts and action variance is compared
with four baselines that address different dimensions of the multi-
agent multi-objecitve problem: 1) NSGA-II, a widely used multi-
objective evolutionary algorithm that leverages non-dominated sort-
ing and crowding distance to produce Pareto fronts with high fitness
and coverage [9]; 2) SPEA2, a traditional multi-objective optimiza-
tion method that explicitly archives and ranks solutions using density
estimates in the objective space [40]; 3) Multi-objective Asymmetric
Island Model, an island model-based multi-objective learning frame-
work that improves coverage of trade-offs in the objective space by
training teams on a wide variety of tasks simultaneously [10]; and 4)
Malthusian Reinforcement Learning (MRL), a hierarchical learning
framework that encourages agents to specialize by applying selection
pressure over various tasks (called islands) [22].

4.2 Experimental Parameters

4.2.1 Environment

The cooperative mining problem is instantiated as a continuous 2D
environment of size 100x100 units, with uniformly distributed ore
deposits and an episode length of 50 time-steps.

State Space: The state for each agent is a partial observation
within their observation radius. The observation is a vector of 20
density values: 12 values that capture the density of the three agent
classes (densities in the four quadrants for each class; equation 7)
and eight density values for the ore deposits (four for iron and calcite
each; equation 6). The observation radius for each agent is randomly
sampled to be between [10, 14] units. Each ore deposit also has an
observation radius between [4, 12] units: c agents have to be within
a deposit’s radius to perform their class-specific task (equation 8).

Action Space: Agents have two continuous navigational actions
(dx, dy) ∈ [−1.0, 1.0]2, and an additional discrete class-specific ac-
tion (available in an ore’s radius) to mark, extract and refine an ore.

Rewards: On the islands, the class-specific utility, equation 9, is
used as the dense reward by the policy gradient in MOI-IM and on
the islands by MO-AIM [10]. The utility function (parameterized
by the weights λ and ore values vk) reinforces each class’ prefer-
ences by rewarding an agent for simply visiting an ore independently.
The weights λ0 and λ1 for rovers, excavators and refiners are set to
[0.7, 0.3], [0.2, 0.8] and [0.5, 0.5] respectively. These weights can be
interpreted as follows: Iron deposits have a larger observation radius
and are therefore easier to find and mark. Therefore, rovers have a
higher utility for marking iron deposits. Excavators prefer extracting
the calcite ores, while refiners are indifferent to the ore type. The val-
ues vk for deposits are sampled from [2, 8] and the maximum number
of calcite ores to refine ψ is set to 8.

The team fitness vector Φt (equation 8) is assigned to the teams
at the end of each episode. It is used by MOI-IM and MO-AIM on
the mainland, and by NSGA-II and SPEA2 as the fitness of candi-
date solutions. MRL uses a linear combination of the team fitness
and class-specific utility to train policies across its islands [22]. The
cumulative class fitness fi used to update the parameters of the dis-
tribution µ (algorithm 2, line 12) is the summed value, across the
teams on the mainland, of the ores that were marked, excavated and
refined by the three classes respectively. fi isolates the impact each
class had in the teams on the mainland.

4.2.2 Learning Parameters

Replay buffers RI store trajectories of the experiences which is used
as the dataset for the autoencoder (parameters from [7]) on each is-
land. A trajectory is a vector of state transitions (st, at, st+1, ui,t)
encountered by a policy as it participates in a team on the mainland.
Note that the utility ui,t is computed at each time step t but is only
used on the islands when DDPG samples from the replay buffer. The
actor and critic networks on each island [23] are fully connected neu-
ral networks with input size 20, 3 hidden layers with ReLU activa-
tion, and three output neurons.

Unless stated otherwise, baselines use parameters from their orig-
inal work [10, 22, 7, 9]. The evolutionary algorithms in MOI-IM and
MO-AIM use N = 1000 (number of generations and gradient steps;
algorithm 2, lines 9-11). The adaptation and regularization rates used
for updating µ, are α = 1e−5 and ν = 0.01 (algorithm 2, line 12).
Binary tournament on the mainland is done according to [29] and the
mutation parameters are adopted from [19] (algorithm 3, line 10).



Figure 3. Number of Ores refined (A) and the Pareto fronts produced (B)
by teams of 16 agents in the cooperative mining problem with coupling

c = 3. MOI-IM outperforms all baselines significantly while requiring fewer
evaluations.

Mutation on the mainland is applied to each policy in a team by per-
turbing a fraction of the weights mf = 0.15 with Gaussian noise
with a probability mp = 0.3 (congruent to the mutation probability
and index of a polynomial mutation [8]).

4.2.3 Reported Metrics

For all baselines, the highest number of successfully refined ores
(normalized) at each generation is reported. Three instances of the
cooperative mining environment are created for the islands in MRL
and the mainlands in MO-AIM [11]. 10 independent runs are con-
ducted for each baseline with random seeds. The average and 95%
confidence interval is shown for both the fitness (shaded region)
and the Pareto front (dominated trade-offs shown with smaller al-
pha). The computation requirements across the methods differ signif-
icantly: MRL requires training across multiple instances of the prob-
lem, while MO-AIM requires several optimization processes to run
in concert. To make comparisons fair, all metrics are reported against
the total number of environment steps (frames).

5 Results

5.1 Multi-Objective Coordination

We begin by examining the performance of teams, measured using
the number of ores refined successfully, and the coverage of trade-
offs in the objective space. Figure 3 compares MOI-IM’s perfor-
mance with the baselines in the cooperative mining problem with
a coupling c = 3.

Teams trained with MOI-IM refine over 85% of the ore deposits
successfully and in significantly fewer learning steps (over 70% in
under 1.5 million against 7 million steps for MO-AIM). MO-AIM’s
higher variance and slower learning can be attributed to two reasons.
First, MO-AIM’s on-policy gradient optimization requires indepen-
dent evaluations on both the islands and the mainlands. In contrast,
the islands in MOI-IM exploit experiences collected on the main-
land. Second, a crucial aspect of diversity search is the mutation strat-
egy. In MO-AIM, this is achieved by perturbing weights with Gaus-
sian noise. MOI-IM on the other hand, performs systematic search
through the behavior space which is informed by the performance of
policies of the mainland (supported in section 5.2, figure 6).

Figure 4. Number of Ores refined (A) and the Pareto fronts produced (B)
by teams of 18 agents in the cooperative mining problem with coupling
c = 4. When the desired trade-off is known a priori, Chebyshev sampling

allows MOI-IM to concentrate diversity search on a small subset of the
behavior space, leading to high-fitness teams in under a million evaluations.

When the desired trade-off is not known, biased sampling produces the
highest coverage in the objective space.

Examining the Pareto fronts suggests a potential correlation be-
tween the behavior space exploration strategy and the resultant diver-
sity in trade-offs (figure 3.B; partially supported in [15]). While the
best teams trained with MO-AIM succeed to refine over 75% of the
deposits, the performance is limited to a subset of the Pareto front.
In contrast, MOI-IM yields high-fitness teams that exhibit significant
coverage in the objective space.

Teams trained with MRL are unable to consistently refine ores.
The selection pressure applied on MRL’s islands encourages spe-
cialization of roles which discourages the rovers and the excavators
to cooperate against their utility functions. Indeed, on an island on
which the rovers learn to specialize, we see them consistently sat-
isfy c in order to mark deposits. However, the misaligned preferences
with the excavators restricts inter-class cooperation that is required to
succeed on islands on which both classes participate.

Traditional multi-objective optimization methods NSGA-II and
SPEA2 do not inherently account for asymmetric agents in a team.
Therefore, we use the distribution µ learnt by MOI-IM to sample
teams for them. Both methods fail to produce high-fitness teams,
which can be attributed to the misaligned preferences, lack of an ex-
plicit (behavioral) diversity mechanism, and fitness sparsity due to
the coupling requirement.

5.2 Informed Diversity

In multiagent multi-objective settings, agent must learn diverse be-
haviors that allow them to balance their individual preferences with
the team objectives [34]. As exhaustive search through the behavior
space is intractable and unnecessary [10], it is pertinent to consider
strategies that aid in effective exploration of the behavior space. We
consider several different sampling strategies χ (section 3.2.2) that
dictate the trajectory ES will take to navigate in the behavior space.
Figure 4 highlights the effect of χ on the average team performance
in the cooperative mining problem with coupling c = 4.

5.2.1 Decision Support Setting

In these settings, the desired trade-off is available only after learn-
ing is complete and is subject to change. Therefore the goal is to



Figure 5. Biased sampling produces teams which contain roughly equal
number of rovers, excavators and refiners. Chebyshev sampling allows µ to

adapt for the desired trade-off Z, with a higher number of rovers.

maximize coverage in the objective space. We start with the tradi-
tional QD strategy of sampling from the behavior space (elite archive
AE) uniformly [30]. Uniform sampling does not specifically attend
to regions that produce promising policies in order to favor exhaus-
tive search. Finding suitable behavioral diversity thus takes longer
(figure 4.A) and results in a sparsely explored behavior space which
produces low-fitness teams.

Next, instead of sampling uniformly from the elite archiveAE , we
sample from the policies in the archive that are on the Pareto front
(Uniform PF in figure 4). This substantially improve both learning
speed (sub-figure A) and the coverage in the objective space (sub-
figure B). Sampling from the Pareto front allows diversity search to
concentrate on regions of the behavior space that yield diverse trade-
offs between the two objectives. Our hypothesis is that selective sam-
pling from the Pareto front is closely related to searching in the elite
hypervolume [39].

We build on this further by incorporating a categorical distribution
that favors policies in the elite archive which maximize the individual
utility function (motivated by [6]). This allows diversity search to
consider diverse policies which have a high utility but are not on the
Pareto front yet. We notice marginal improvements in objective space
coverage and overall team performance. However, the learning speed
improves substantially (sub-figure A) as islands are able to fluidly
adapt search to promising regions in response to the evolutionary
optimization on the mainland.

5.2.2 Known Trade-offs

This is a special case in which the desired trade-off Z is known a pri-
ori. The goal shifts from maximizing coverage in the objective space,
to finding high-fitness teams that can express Z. We replace the lin-
ear scalarization κ in biased sampling with the Chebyshev scalariza-
tion κ (section 3.2.2). Intuitively, Chebyshev sampling favors poli-
cies from teams that are the furthest away fromZ, and encourages ES
to explore regions of the behavior space that can minimize the devia-
tion from Z. In the cooperative mining problem with coupling c = 4,
18 agents, and 8 ore deposits of each type uniformly distributed, we
set Z to perfectly balance the fitness from both objectives ϕ0 and ϕ1

(note that the precise value of Z changes for each run because it is a
function of vk: equation 8).

Figure 4 shows the average performance of teams and the cov-
erage using Chebyshev sampling. Of the four strategies evaluated,
learning with Chebyshev sampling is the fastest across the 15 in-
dependent seeds. By focusing utility optimization to regions of the

Figure 6. A phylogenetic tree that highlights the trajectory taken by
diversity search for rovers in the cooperative mining problem. Each node

represents a policy produced by ES that was added to the elite archive. The
node size represents the number of descendants the policy produced

(through mutation on the mainland and sampling on the island). The node
color indicates the average scalarized fitness of the teams in which it

participated (yellow is higher). The phylogenetic tree shows that systematic
application of ES to low-fitness policies can create distinct lineages of

high-fitness and diverse (shown spatially) descendants.

behavior space that deviate from the trade-off, the islands are able to
drive search towards regions that can achieve the desired trade-off Z,
at the cost of minimal coverage in the objective space. This is also ev-
ident in the drastic difference between team composition (across 15
seeds), as shown in figure 5. The diversity produced using Chebyshev
sampling is also reflected by the team sampling distribution µ, which
adapts to sampling a higher number of rovers in teams (sub-figure
B). This is beneficial since the desired trade-off Z favours rovers that
can work against their individual preference and mark both iron and
calcite ore deposits equally.

6 Discussion

This work introduces Multi-Objective Informed Island Model (MOI-
IM), a multiagent multi-objective learning framework that produces
teams of asymmetric agents capable of expressing diverse trade-offs
by balancing their class-specific and team objectives. MOI-IM lever-
ages an evolutionary algorithm that uses non-dominated sorting with
crowding distance to evolve high-fitness teams that improve coverage
in the objective space. The experiences collected by the evolutionary
algorithm are used to reinforce class-specific objectives, shape the
behavior space, and guide an evolution strategy through the behavior
space. Periodically, diversity is injected into the evolutionary popu-
lation by replacing teams with policies sampled from the behavior
space. The shared replay buffers and behavior spaces ensure that di-
versity search is guided by the team objective optimization.

MOI-IM’s diversity search considers several sampling strategies
that can fluidly adapt search to regions of the behavior space where
progress is currently being made. However, these strategies assume
that class-specific scalarization is fixed and known a priori (equa-
tion 3). In future work, we will consider sampling strategies that are
agnostic to class-specific preferences and allow further alignment be-
tween diversity search and the team objectives.
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