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ABSTRACT
To coordinate in multiagent settings, asymmetric agents (agents
with distinct objectives and capabilities) must learn diverse be-
haviors that allow them to maximize their individual and team
objectives. Hierarchical learning techniques partially address this
by leveraging a combination of Quality-Diversity to learn diverse
agent-specific behaviors and evolutionary optimization to max-
imize team objectives. However, isolating diversity search from
team optimization is prone to producing egocentric behaviors that
have misaligned objectives. This work introduces Diversity Aligned
Island Model (DA-IM), a coevolutionary framework that fluidly
adapts diversity search to focus on behaviors that yield high fit-
ness teams. An evolutionary algorithm evolves a population of
teams to optimize the team objective. Concurrently, a combination
of gradient-based optimizers utilize experiences collected by the
teams to reinforce agent-specific behaviors and selectively mutate
them based on their fitness on the team objective. Periodically, the
mutated policies are added to the evolutionary population to in-
ject diversity and to ensure alignment between the two processes.
Empirical evaluations on two asymmetric coordination problems
with varying degrees of alignment highlight DA-IM’s ability to pro-
duce diverse behaviors that outperform existing population-based
diversity search methods.
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• Computing methodologies→Multi-agent systems; Coop-
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1 INTRODUCTION
Cooperative multiagent settings are ubiquitous and represent many
real-world problems such as healthcare coordination [25], robotic
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automation [20, 24], and air traffic control [17, 34, 35]. Successful
cooperation in these settings requires agents to not only learn
good actions, but to learn good joint actions [4]. The problem is
aggravated when the agents are asymmetric – they have distinct
capabilities and objectives – and must learn diverse inter-agent
interactions to overcome potentially conflicting objectives [22, 36].

Quality-Diversity (QD), unlike traditional learning methods, fa-
cilitates diversity-seeking optimization by learning and cataloguing
a collection of diverse high-performing policies in a behavior space
[30]. Coverage, and therefore exploration, is predominantly driven
by Genetic Algorithms that repeatedly sample and mutate policies
from the behavior space [10]. However, uniformed mutations are
inefficient and struggle in high-dimensional behavior spaces [8].
Moreover, exhaustive coverage is intractable and often unnecessary
in multiagent settings: only regions of the behavior space that yield
policies with the capacity to cooperate are beneficial [11].

Recent advances in multiagent QD methods have employed a hi-
erarchical approach that transforms the behavior space into smaller
agent-specific subspaces, making diversity search tractable[11].
However, searching through disjoint agent-specific behavior spaces
can produce egocentric behaviors that, although diverse, are mis-
aligned with the team objective.

This work introduces Diversity-Aligned Island Model (DA-IM), a
multiagent learning framework that produces teams of asymmetric
agents capable of exhibiting diverse high-fitness behaviors required
to coordinate. DA-IM leverages a combination of gradient-based
optimizers and a gradient-free coevolutionary algorithmwhich con-
verge simultaneously by sharing information through a behavior
space. The coevolutionary algorithm evolves a population of teams
(groups of policies) to maximize the team objective. The experi-
ences collected during evolution are used by: 1) A gradient-based
off-policy algorithm to sample policy gradients which reinforce
behaviors that maximize an agent-specific objective; and 2) An
autoencoder that learns a low dimensional representation of the
state-action trajectories drawn from the experiences. The result-
ing latent space is used as a behavior space to perform informed
diversity search using an evolution strategy.

Periodically, policies from high-fitness teams and the gradient-
based optimizers are added to the shared behavior space. The evo-
lutionary algorithm samples policies from the behavior space there-
fore allowing diverse policies from the gradient-based optimizers to
permeate the team population. Similarly, the experience collected
during evolution will feed into the autoencoder to bias diversity
search towards regions of the behavior space that yield high-fitness
policies.

https://doi.org/10.1145/3638529.3654206
https://doi.org/10.1145/3638529.3654206
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We show DA-IM’s ability to produce high-fitness teams in two
distinct mining problems that require asymmetric agents to bal-
ance their individual agent-specific objective with a broader team
objective. The ability of our method to produce diverse policies is
highlighted in an experiment with misaligned objectives.

2 BACKGROUND AND RELATEDWORK
2.1 Multiagent Learning
Learning in multiagent settings is particularly difficult due to non-
stationarity and credit assignment [3]: agents in a team must learn
simultaneously and discern the impact of their actions on the team
reward [21]. The credit assignment problem also extends temporally
as multiagent settings are characterized by a sparse reward that
is available after taking a long trajectory of actions [37]. Recent
advances in reward shaping methods have partially addressed this
problem by either creating “stepping stone" rewards or by learning
to decompose the sparse reward into denser rewards [27]. However,
shaping requires intimate knowledge of the problem and is prone
to creating misaligned rewards [13].

The centralized-learning-with-decentralized-execution paradigm
addresses this problem partially, by effectively transforming the
multiagent system to a single agent Markovian setting [26]. How-
ever, this paradigm has seen limited application because of its un-
derlying assumptions of agent symmetry and fixed team size.

Evolutionary methods have been applied to a broad range of
multiagent problems because of their ability to optimize a popula-
tion of policies without using gradients [18]. However, the problem
of learning to interact with the environment and with other agents,
traditionally occurs along different dimensions (physical and social)
[2]. This is exploited by hierarchical methods, such as Multiagent
Evolutionary Learning (MERL), that leverage a gradient-based opti-
mizer to learn along the physical dimension and an evolutionary
algorithm to learn along the social dimension [19]. MERL implicitly
aligns the two objectives by evolving policies that have been trained
on agent-specific behaviors. However, this has a homogenizing ef-
fect on the population, which is necessary but unsuitable, for the
convergence of the two optimizers (explored in section 5.3).

2.2 Quality Diversity
Unlike traditional optimization methods, Quality Diversity (QD)
are a family of diversity-seeking methods that catalogue an archive
of policies in a behavior space [30]. QD is an iterative two-step
process that: 1) samples a policy from the archive and mutates
it; and 2) adds the mutated policy to the archive by selecting the
higher-fitness policy, if a policy already exists in that space (local
K-neighbor distances or niche for structured archives) [8]. It is typ-
ically non-trivial to define the behavior space dimensions (archive
axes) when the problem exists along the social dimension [2]. Char-
acteristics such as "inclination to cooperate" would be suitable, but
are nebulous and difficult to quantify [12].

Recent advances in QD have successfully used dimensionality re-
duction techniques to infer a behavior space from data collected by
a population of policies [10, 12]. However, applying this technique
to multiagent settings remains challenging due to the combinatorial
nature of multiagent action spaces resulting in a completely impen-
etrable black-box behavior space [16]. Methods such as Malthusian

Reinforcement Learning (MRL) and Multiagent Coevolution for
Asymmetric Agents via Island Model (henceforth abbreviated to
IM) partially alleviate this by resource limitation, adaptive popula-
tions to force specialization, and the transformation of the behavior
space into smaller agent-specific spaces [11, 23]. However, these
methods are sample inefficient (linearly increasing the number of
evaluations with the number of agent classes) and are prone to pro-
ducing diverse egocentric behaviors that are suboptimal in teams
[12]. This work builds off of the Island Model [11] to create a sample
efficient learning framework that produces team-aware diversity.

2.3 Evolution Strategies
Evolution Strategies (ES) are gradient-based optimization methods
in which a parameterized distribution over solutions is updated
in the direction of higher fitness solutions [5]. Our work uses the
OpenAI-ES variant that updates its distribution by approximated
natural gradients [32]. An isotropic multi-variate Gaussian distribu-
tion is used with mean 𝜃𝜇 and a fixed variance 𝜎 . A population of
𝑍 solutions is sampled and evaluated on the objective 𝐹 (algorithm
1, lines 2-3). This is used to estimate the gradient of the expected
fitness to update the parameters of the distribution (line 4). We use
a novelty score𝜓 (equation 1) as the objective function. The novelty
score for a solution 𝑡ℎ𝑒𝑡𝑎 is the average distance to its 𝐾-nearest
neighbors in the behavior space (novelty archive 𝐴𝑁 ).

𝜓 (𝜃 ) = 1
𝐾

𝐾∑︁
𝑘=1
| |𝑑𝜃 − 𝑑𝑘 | |2 (1)

Our work uses this ES variant (referred simply as ES henceforth)
to systematically search for diverse behaviors in the behavior space.

Algorithm 1: ES Gradient Step (adapted from [32])
1 Function ES_step(𝐹 : objective, 𝜃𝑡 : solution):
2 𝜖1,..., 𝜖𝑍 ∼ N(0, 𝐼 )
3 𝐹𝑖 = 𝐹 (𝜃𝑡 + 𝜎𝜖𝑖 ), for 𝑖 = 1 to 𝑍
4 𝜃𝑡+1 ← 𝜃𝑡 + 𝜆 1

𝑍𝜎

∑𝑍
𝑖=1 𝐹𝑖𝜖𝑖

5 return 𝜃𝑡+1

3 DIVERSITY ALIGNED ISLAND MODEL
This work introduces Diversity Aligned Island Model (DA-IM), a
multiagent learning framework that produces teams of asymmetric
agents that express diverse behaviors required to cooperate on
individual class-specific and team objectives. This is achieved by
leveraging a combination of three processes: 1) an evolutionary
algorithm that evolves a population of teams to maximize team
fitness, 2) a gradient-based optimization that reinforces experiences
generated by the evolutionary algorithm to maximize individual
objectives, and 3) an evolution strategy that introduces diversity in
the team population by systematically improving coverage in the
behavior space. We adopt the terminology introduced in [11]: the
evolutionary algorithm used to train teams of asymmetric agents
is called a “mainland" and the combination of policy gradients and
NS-ES for each agent class is called an “island".
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Figure 1: DA-IM Overview: Each island represents a combina-
tion of a class-specific objective and a QD optimizer (figure
2). A mainland represents a population of teams (groups of
policies) that are evolved to maximize the team objective
(fitness 𝜙 (𝑡)). After every 𝑁 gradient updates on the island
and evolutionary updates on the mainland, the weights 𝑤
of the softmax distribution 𝜇 are updated in the direction of
team composition that maximizes fitness 𝜙 (𝑡) on the main-
land. The softmax 𝜇 is used to sample policies from the elite
archives 𝐸𝐴

𝑖∈𝐼 from all islands to replace the low-fitness teams
on the mainland by potentially diverse policies that were dis-
covered on the islands. Additionally, policies from elite teams
on the mainland are added to the elite archives. The experi-
ences collected on the mainland are then migrated to each
island to bias the diversity search.

Figure 1 presents a high-level overview of DA-IM. An island 𝑖
is initialized for each agent class, along with an initial population
𝑝𝑜𝑝𝑖 of randomly initialized policies (algorithm 2, lines 1,2). Each
island 𝑖 ∈ 𝐼 is assigned two empty archives (elite A𝐸

𝑖
and novelty

archive A𝑁
𝑖
), and a replay buffer R𝑖 that will store experiences

collected by the population 𝑝𝑜𝑝𝑖 (lines 3-4).
DA-IM progresses as follows: Policies from the initial populations

𝑝𝑜𝑝𝑖 are drawn from a categorical distribution, with probabilities
given by a softmax 𝜇 over weights 𝑤 𝐼 , to create 𝑀 teams of 𝑆
policies each (line 6). The weights𝑤 𝐼 are randomly initialized and
dictate the team composition. The mainland runs an evolutionary
algorithm over the 𝑇 initial teams and collects experiences in 𝑅𝐼
replay buffers (line 7). The mainland and 𝐼 islands run in parallel
until convergence (lines 8-11).

3.1 Mainland
Amainlandmaintains a population of teams (groups of policies) that
is evolved using an adaptation of the cooperative coevolutionary
algorithm (CCEA) [31] (algorithm 3). At each generation, teams are
evaluated and ranked using the sparse team fitness (lines 3-4). The
𝑒 highest-fitness teams are considered elites and are retained for the
next generation (line 5). Policies from the remaining teams undergo
a single-point crossover with policies from the elites using binary
tournament (lines 6-8). The crossover uniformly samples policies
from the low-fitness and elite teams to create new teams that have
a higher likelihood of succeeding [15]. Policies in the new teams are

Algorithm 2: Diversity Aligned Island Model (DA-IM)
1 Initialize 𝐼 islands, one island per agent class
2 Initialize 𝐼 initial populations of policies 𝑝𝑜𝑝𝑖∈𝐼
3 Initialize archives A𝐸

𝑖
and A𝑁

𝑖
for each 𝑖 ∈ 𝐼

4 Initialize 𝐼 empty cyclic replay buffers R𝑖∈𝐼
5 Function DAIM(𝐼 :Islands,𝑀 :Mainlands):
6 𝑇 = [𝑻1, 𝑻2, ..., 𝑻𝑴 ] ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝑆𝑝𝑜𝑝𝑖∈𝐼 (𝝁)
7 𝑇,R𝐼 = mainland(𝑇,R𝐼 ) // initial experiences

8 for 𝑘 ← 0 to∞ do
9 do in parallel
10 𝑇,R𝐼 = mainland(𝑇,R𝐼 ) ∀𝑖 ∈ 𝐼
11 island𝑖 (R𝑖 , [A𝐸𝑖 ,A

𝑁
𝑖
]) ∀𝑖 ∈ 𝐼

12 add_to_archives(𝑇 [0 : 𝑒]𝑖 , [A𝐸𝑖 ,A
𝑁
𝑖
]) ∀𝑖 ∈ 𝐼

13 𝑤 ← 𝑤 + 𝛼
[∑𝐼

𝑖=1 ∇𝑤𝜇 (𝑖) (𝑓𝑖 − 𝜈 log 𝜇 (𝑖))
]

14 𝑇 ′ = [𝑻 ′1, ..., 𝑻
′
( |𝑻 |−𝒆)

] ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝑆
𝐴𝐸
𝐼

(𝝁)

15 𝑇 ← 𝑇 [0 : 𝑒] ∪ 𝑇 ′

mutated by perturbing their weights using Gaussian noise (line 9).
Over 𝑁 generations, the mainland gradually improves the fitness
of asymmetric teams on the team objective.

Algorithm 3:Mainland (CCEA, adapted from [19])
1 Function mainland(𝑇 : teams, R𝐼 : Replay Buffers):
2 for 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 to 𝑁 do
3 Φ𝑡 ,R𝐼 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑡) | ∀𝑡 ∈ 𝑇
4 𝑇 ← 𝑟𝑎𝑛𝑘 (𝑇 ) // sort using Φ𝑡 ∈𝑇

5 𝐸 = 𝑇 [0 : 𝑒] // select top e elite teams

6 Create set 𝑆 = ∅ using binary tournament:
7 while |𝑆 | < ( |𝑇 | − 𝑒) do
8 𝑡 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑡𝑥 ∼ 𝑈 (𝐸), 𝑡𝑦 ∼ 𝑈 (𝑇 − 𝐸))
9 𝑡 ←𝑚𝑢𝑡𝑎𝑡𝑒 (𝑡) // perturb weights

10 𝑆 ← 𝑆 ∪ 𝑡
11 𝑇 ← 𝑆 ∪ 𝐸

3.2 Islands
For each agent class, an island uses a combination of QD to explicitly
search and catalogue diverse policies [10], and Deep Determinis-
tic Policy Gradient (DDPG) [24] to reinforce primitive behaviors.
Figure 2 provides an overview of the island process.

Diversity Search: Instead of discarding the experiences gen-
erated by the evolutionary algorithm on the mainland, they are
collected in R𝐼 replay buffers which are assigned to their corre-
sponding islands. Trajectories from the buffer R𝑖 on each island 𝑖 ,
are used as a dataset to train an autoencoder. The dimensionality
reduction results in a latent space that captures the variance in the
policies that generated the input trajectories [1]. This latent space is
used as a behavior archive for performing QD [10, 11]. Each island
uses two instances of this space: an elite archive A𝐸 to catalogue
policies from high-fitness teams on the mainland, and a novelty
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Figure 2: Island Overview: Trajectories of experiences col-
lected on the mainland form a dataset (A). They are sam-
pled by a gradient-based off-policy optimizer to reinforce
class-specific objectives (B). An autoencoder is trained on this
dataset to produce a low dimensional latent space that is used
as the behavior space for QD (A, C). Two distinct instances of
this space are used as the elite and novelty archives (D, E). An
ES samples from the elite archive and takes 𝑁 gradient steps
to maximize the novelty objective 𝜓 (D, E). Subsequently,
Policies from (B) and (E) are added to the elite archive (D).

archive A𝑁 that retains all policies that have participated on the
mainland (algorithm 4, line 2).

Traditional QD methods improve coverage, and thereby diver-
sity, by uniformly sampling policies from the behavior archive and
mutating them (by perturbing weights of the policy network) [30].
However, in cooperative multiagent settings, an exhaustive cover-
age of the behavior space is intractable and generally unnecessary:
it is beneficial to focus on the regions of the behavior space that
yield complementary policies capable of working in teams [11]. To
facilitate this, we introduce two crucial changes. First, instead of
uniform sampling, a policy 𝜃 is sampled using a biased discrete
probability distribution that is a function of 𝜃 ’s fitness Φ on the
mainland (motivated by [9]). This ensures that diversity search
fluidly selects regions of the behavior space that currently produce
high-fitness policies on the mainland (algorithm 4, line 3). Second,
instead of using a noise-based mutation [12], NS-ES with a novelty
objective 𝜓 (equation 1) is used to systematically move 𝑁 steps
through the behavior space (algorithm 4, lines 4-5).

Reinforcing Class-Specific Behaviors: The experiences col-
lected on the mainland are exploited to train a policy 𝜃𝑝𝑔 by updat-
ing its parameters using gradient descent (similar to [19]). Over 𝑁
iterations, DDPG samples random mini-batches from the buffer R𝑖
and uses it to sample a policy gradient that maximizes the class-
specific objective (algorithm 4, line 6). This bootstraps learning
by ensuring that agents learn primitive behaviors along the physi-
cal dimension of the environment, so the mainland can attend to
learning along the social (inter-agent) dimension [2].

Archiving: Following the 𝑁 parallel ES and DDPG gradient
updates, the trained policies 𝜃𝑛 and 𝜃𝑝𝑔 are added to the elite and
novelty archives (line 7).

Algorithm 4: Island
1 Function island(R: replay buffer, A: archives):
2 A𝐸 ,A𝑁 ← update_projection(R)
3 𝜃𝑛 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 ( Φ(𝜃𝑥 )∑

𝜃
𝑦∈A𝐸

Φ(𝜃𝑦 ) ) |𝜃𝑥 ∈ A
𝐸 ))

4 do in parallel for 𝑁
5 𝜃𝑛 ← ES_step (𝜓 , 𝜃𝑛)
6 𝜃𝑝𝑔 ← 𝑑𝑑𝑝𝑔(R)
7 add_to_archives([𝜃𝑝𝑔, 𝜃𝑛], [A𝐸 , A𝑁 ])

3.3 Alignment
After the mainland and the islands complete 𝑁 updates, it is criti-
cal to share information between the two potentially orthogonal
optimizations. Policies that were part of the 𝑒 elite teams on the
mainland, are added to the elite and novelty archives (algorithm 2,
line 12). This addition will affect diversity search, as the biased sam-
pling (algorithm 4, line 3) will have a higher likelihood of selecting
high-fitness elites from the archive. Similarly, the aggregation of
new experiences from the mainland to the buffers 𝑅𝐼 will subse-
quently affect the latent space (and consequently diversity search)
as it becomes part of the dataset used to train the autoencoder
during the next iteration.

The weights 𝑤 of the softmax function 𝜇 (𝑤)𝑖 = 𝑒𝑤𝑖∑𝐼
𝑗=1 𝑒

𝑤𝑗
are

updated using a gradient rule to move the distribution in the direc-
tion that maximizes the cumulative fitness 𝑓𝑖 of each agent class
𝑖 ∈ 𝐼 (algorithm 2, line 13). The entropy regularization term log 𝜇 (𝑖)
ensures that a non-zero number of agents from each class 𝑖 are part
of every team, and hyperparameters 𝛼 and 𝜈 represent the adap-
tation and regularization rates. The ( |𝑇 | − 𝑒) non-elite teams are
replaced by new teams that are created by sampling from the elite
archives A𝐼

𝐸
using updated distribution (lines 14, 15). This ensures

that novel behaviors from the islands permeate the evolutionary
process on the mainland.

4 EXPERIMENTAL SETUP
4.1 Cooperative Mining
We introduce cooperative mining, an asymmetric problem that
builds on the exploration problems in [2, 12, 19, 23], in which agents
deployed to a remote environment must prospect, extract and refine
ores. The responsibilities are shared across three agent classes: 1)
Rovers that can explore and mark suitable ore deposits; 2) Excava-
tors that must extract the marked ores; and 3) Refiners that must
purify the excavated ore.

Rovers can successfully mark a prospected ore deposit, if 𝑐
rovers mark it simultaneously (we call 𝑐 the coupling constraint). A
rover is equipped with two distinct sensors: one that captures the
density of ore deposits required for prospecting, and the other for
capturing the density of agents around it.

𝑆𝑎,𝑞 =
∑︁
𝑗∈ 𝐽𝑞

1
𝑑 (𝑖, 𝑗) (2) 𝑆𝑜,𝑞 =

∑︁
𝑘∈𝐾𝑞

𝑣𝑘

𝑑 (𝑖, 𝑘) (3)

In equation 2, sensor 𝑆 captures the density of agents of class
𝑎 in quadrant 𝑞 (the environment is divided into four quadrants,
centered around the sensing agent; similar to [19]). 𝐽𝑞 is the set of
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agents in 𝑞 within the agent’s observation radius, and 𝑑 (𝑖, 𝑗) is the
Euclidean distance between the sensing agent 𝑖 and the other agent
𝑗 . Similarly, equation 3 computes the density of ore (deposits) 𝑜 , in
quadrant 𝑞, within the sensing agent 𝑖’s observation radius. 𝑣𝑘 the
value associated with ore deposit 𝑘 , will be used to compute the
team fitness (equation 4).

Excavators can observe marked ore deposits and 𝑐 excavators
must visit them simultaneously to successfully extract them. The
excavators possess the same density sensors (equations 2, 3). 𝑐
refiners must visit extracted ores simultaneously to purify them.
Refiners also use the two density sensors.

The team fitness 𝜙 (𝑡) for a team 𝑡 is given by:

𝜙 (𝑡) =
∑︁
𝑝∈𝑃

∏
𝑣𝑝 𝐼 (𝑐, 𝑝) (4)

In equation 4, 𝐼 (𝑐, 𝑝) is an indicator function that is true if the
coupling requirement 𝑐 was met in refining an ore 𝑝 ∈ 𝑃 and 𝑣𝑝 is
the value associated with that ore.

4.1.1 Agent Relationships. The team fitness 𝜙 (𝑡) highlights the
rich inter-class relationships required to succeed in this problem.
In order to satisfy the coupling constraint 𝑐 , each agent class must
learn intra-class temporal and spatial dependencies. On the other
hand, since the team fitness 𝜙 (𝑡) only rewards refined ores, maxi-
mizing it requires each class to learn inter-class temporal depen-
dencies.

4.2 Common Interest Mining
Common interest mining (CIM) builds off of cooperative mining
with a drastic shift in class roles and available ores. We assume
that prospecting has been completed and ores have been marked.
CIM consists of three agent classes: 1) Excavators that can extract
iron ore; 2) Drillers that can extract calcite ore; and 3) Refiners that
must purify the extracted ore. The three classes use the density
sensors (equations 2, 3) to observe ore deposits and other agents in
the environment (one density sensor per ore type). Each class must
also satisfy the 𝑐 coupling constraint. A third kind of ore, gold, can
also be mined if 𝑐 excavators and 𝑐 drillers visit it simultaneously.
Value 𝑣𝑘 for extracting gold is higher than the values for extracting
iron and calcite.

The value differential induces a trust dilemma (commonly asso-
ciated with the stag hunt [33] and Bach or Stravinsky [14]) wherein
the excavators and drillers must independently decide whether to
mine their respective ores or mine gold together. While the two
classes can learn to individually mine their corresponding ores, this
is a clearly suboptimal. However, if only one of them attempts to
mine gold, the team is worse off (there are two pure-strategy Nash
equilibria: one where both classes cooperate, and one where both
defect [6]). This problem sets up a challenge in which the individual
objectives are misaligned with the team objective.

4.3 Compared Baselines
DA-IM is primarily assessed on the quality of teams it can produce.
We gauge quality based on quantitative metrics that capture both
performance (team fitness in equation 4) and behavioral diversity
(through expected action variance [28]). We also examine the dis-
tribution and fitness of policies in the behavior space produced

by DA-IM. Finally, we highlight DA-IM’s ability to systematically
navigate the behavior space by inspecting a trajectory followed by
the diversity search process on the islands.

The team fitness is compared against three baselines: 1) Mul-
tiagent Coevolution for Asymmetric Agents (IM), a hierarchical
learning framework that separates diversity search and team opti-
mization to produce teams with highly specialized behaviors [11]; 2)
Multiagent Evolutionary Reinforcement Learning (MERL), a learn-
ing framework that leverages gradient-based and gradient-free
optimization for sample efficient learning in sparse reward settings
[19]; and 3) Malthusian Reinforcement Learning (MRL), which uses
multiple instances of the problem simultaneously to force special-
ization of behaviors through adaptive populations [23].

4.4 Experimental Parameters
4.4.1 Environment. Experiments in the mining problems are con-
ducted in a continuous 2D environment of size 100x100 units, with
the episode length set to 50 steps.

State Space Agents receive a partial observation of their envi-
ronment, represented by a density vector. In cooperative mining,
the input state to each agent class is a vector of 16 values: 12 values
that capture the density of the three agent classes (four per class,
according to equation 2), and 4 density values for the ore deposits
(one per quadrant, according to equation 3). Agents in common
interest mining use 12 density values for the three agent classes and
12 density values (4 values for iron, calcite and gold deposits each)
for the ores. The observation radius for each agent is randomly set
to be between [8, 12] units.

Action Space Each agent class has two continuous actions
(𝑑𝑥, 𝑑𝑦) ∈ [−1.0, 1.0]2 for navigation, and an additional class-
specific discrete action to mark, extract or refine an ore.

Rewards The dense reward used to reinforce class specific be-
haviors on the islands (section 3.2) is the inverse Euclidean distance,
given by 𝑟𝑑 (𝑖, 𝑡) = 1

𝑑 (𝑖,𝑘 ) , where 𝑑 (𝑖, 𝑘) is the Euclidean distance
between the sensing agent 𝑖 and the closest ore 𝑘 at step 𝑡 . This
reward allows the three agent classes to learn a "local skill" in their
physical environment (navigating to an ore deposit) that can be
beneficial in the broader team problem which requires coordination.
In cooperative mining, the closest ore 𝑘 , is the closest unmarked,
marked and excavated ore for rovers, excavators and refiners re-
spectively. In common interest mining, the closest ore 𝑘 , is the
closest iron and calcite ore for the excavators and drillers respec-
tively. 𝑟𝑑 (𝑖, 𝑡) is used by DA-IM and IM [11] on the islands and as
the gradient-based reward for MERL [19].

Team fitness 𝜙 (𝑡) (equation 4) is assigned to each team at the
end of an episode. It is used by the evolutionary algorithm in DA-
IM (on the mainland), IM and MERL. A linear combination of the
team fitness 𝜙 (𝑡) and the Euclidean reward 𝑟𝑑 (𝑖, 𝑡) is used to train
agents with MRL [23]. The cumulative fitness 𝑓𝑖 used to update the
weight vector 𝑤 (algorithm 2, line 13) for an agent class 𝑖 , is the
total number of ores marked, excavated or refined by the respective
classes. 𝑓𝑖 determines the potential impact of each class in the
environment and biases the team composition (via weights𝑤 ) to
be commensurate with this impact.

4.4.2 Learning Parameters. Trajectories of experiences generated
by the evolutionary algorithm on the mainland (collected in 𝑅𝐼 )
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are used as the dataset for the autoencoder on each island. Each
trajectory is a vector of state transition tuples (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) across
an episode, where 𝑠𝑡 and 𝑎𝑡 are the partial observation and action at
time step 𝑡 . A trajectory captures an agent’s preference for visiting
ores and teaming with other agents. Unless stated otherwise, the
parameters used by the baselines (section 4.3) are taken from their
original work [11, 19, 23]. The evolutionary algorithms in DA-IM,
IM and MERL use 𝑁 = 1000 generations. Islands in DA-IM use
𝑁 = 1000 (DDPG randomly samples 𝑁 minibatches and ES uses
𝑁 gradient steps: algorithm 2, lines 9-11). The adaptation and reg-
ularization rates for DA-IM and MRL are 𝛼 = 1𝑒−5 and 𝜈 = 0.01
(algorithm 2, line 13). The tournament selection is done according
to [29] and the parameters used for mutation are adopted from [19]
(algorithm 3, lines 8-9). Mutation on the mainland is applied with a
probability𝑚𝑝 = 0.6 to a fraction of the weights𝑚𝑓 = 0.15, for each
policy in a team 𝑡 (line 9). The actor and critic networks used by
DDPG [24] on the islands are fully connected neural networks with
input size 16 and 24 for cooperative and common interest mining,
3 hidden layers with ReLU activation and three output neurons.

4.4.3 Reported Metrics. For DA-IM, IM and MERL, the team with
the highest fitness 𝜙 (𝑡) at each generation is reported. Five in-
stances of both the environments are created for MRL (islands in
the MRL terminology [23]), and fitness for both the average and the
highest performing team is reported. 𝜙 (𝑡) is normalized such that a
value of 1.0 indicates the successful completion of all ore deposits.
We conduct 10 independent runs for each method with random
seeds and report the average, with the shaded region showing
95% confidence interval. The computation requirements, stemming
from the various gradient updates and evolutionary generations,
vary considerably between the baselines; To make comparisons
fair, the performance of teams is compared against the number of
environment steps (frames).

We use the expected action variance (EAV) that captures the
probability that two policies of the same class 𝑖 , sampled randomly
from the elite archive𝐴𝐸

𝑖
, will select different actionswhen provided

with the same state [28]. EAV is computed by calculating the total
variational distance between the action distributions of policies
that were part of the elite teams after training. For each agent
class, the resultant EAV is a value between 0 to 1, where 0 indicates
homogeneous policies (agents of a class invariably take the same
action for a state), and 1 indicates that agents take different action
when presented with a particular state.

5 RESULTS
5.1 Asymmetric Coordination
bWe start by evaluating the performance of teams trained using DA-
IM and the baselines on the cooperative mining problem. Success
in this problem requires agents in a team to complete their class-
specific objectives (marking, excavating and refining). The dense
Euclidean reward 𝑟𝑑 (𝑖, 𝑡) (section 4.4.1) used on the islands by the
three agent classes incentivizes them to visit ores and is therefore
perfectly aligned with the team objective. Figure 3 shows the fitness
𝜙 (𝑡) on the cooperative mining problem for a coupling 𝑐 = 3.

Teams trained with DA-IM and IM are able to refine roughly 80%
of the ore deposits successfully. However, DA-IM is able to achieve

Figure 3: Team fitness on the cooperative mining problem.
DA-IM outperforms the baselines while requiring signifi-
cantly fewer evaluations (environment steps).

higher performance with significantly less evaluation steps (over
80% in three million steps against 76% in five million steps). A col-
lection of policies is trained on the islands in IM using an on-policy
gradient method which requires the collection of experiences on
both the islands and the mainland. In contrast, DA-IM exploits the
experiences collected on the mainland using an off-policy optimizer
(DDPG). Additionally, IM uses weight perturbation for mutation
on the island in order to increase coverage in the behavior space.
DA-IM on the other hand, performs informed search through the
behavior space using ES. This is supported by the gradual gradi-
ent of the fitness curve for DA-IM, compared to the punctuated
improvement for IM in figure 3.

MERL uses the same rewards and the hierarchical decomposition
used by DA-IM and IM. Yet it produces teams that are able to refine
under 60% of the deposits. This can be attributed to the lack of di-
versity in teams (a hypothesis that is tested in section 5.3). Policies
sampled from high-fitness teams show convergence to a homoge-
neous “optimal". A perturbation in the action due to the stochastisity
of policies, combined with the inherent non-stationarity, can have
cascading effects that break the chain of the inter-agent and intra-
agent coupling required to succeed.

Teams trained with MRL are unable to consistently refine ores.
Policies from teams inspected in isolation demonstrate that each
agent-class is able to maximize its class-specific reward. However,
MRL fails to adaptively allocate these policies across its islands (en-
vironment instances). Policies (“Species" [23]) in MRL consolidate
experiences from all islands which also homogenizes them.

5.2 Asymmetric Coordination: Misaligned
Objectives

Asymmetric multiagent problems are characterized by agent classes
with distinct objectives or preferences that can be misaligned with
the team objective [7, 25]. Hierarchical methods that independently
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Figure 4: Team fitness on the common interest mining prob-
lem with coupling 𝑐 = 3 (left) and 𝑐 = 6 (right). DA-IM pro-
duces teams with diverse high-fitness policies that can effec-
tively overcome misaligned objectives.

maximize agent-specific and team objectives must have mecha-
nisms in place to ensure that agents are able to balance these ob-
jectives. We use the common interest mining (CIM) problem to
highlight DA-IM’s ability to align policies trained on individual
objectives to the team objective. Crucially, the Euclidean reward
𝑟𝑑 (𝑖, 𝑡) in CIM incentivizes excavators and drillers to visit iron and
calcite ores that can contribute 𝑣𝑘 = 5 per refined ore to the team
fitness 𝜙 (𝑡). However, the team objective can be maximized by
excavating gold ores that have a higher value of 𝑣𝑘 = 20.

Figure 4 shows the team fitness on CIM for coupling 𝑐 = 3 (left)
and 𝑐 = 6 (right). Teams trained with DA-IM are able to refine
roughly 80% of the total ores, albeit requiring more time to reach
fitness comparable to cooperative mining. Initially, policies on the
island that optimize the class-specific objective have a high like-
lihood of getting added to the elite archive successfully. During
the course of learning, the ability to visit an ore, acquired from the
islands, permeates the evolutionary population on the mainland
(as it samples policies from the elite archive). Gradually, as poli-
cies on the mainland learn to visit the higher valued gold ores, the
likelihood of a policy on the island to be added to the elite archive
decreases since the behavior space is transformed to favor policies
from the mainland. By exploiting the experiences generated on the
mainland, the islands are able to effectively bootstrap the team fit-
ness on the mainland further. The performance does not deteriorate
substantially as the coupling is increased (figure 4, right).

The performance of teams trained with IM declines considerably
on this problem since IM relies on adequate alignment between the
team and class-specific objectives. Since the optimization processes
on the islands and the mainland learn independently from disjoint
experiences, policies transferred between the two processes are
invariably rejected due to low fitness (on the mainland) or low
class-specific reward (on the islands). The performance deterio-
rates further as coupling is increased since the likelihood of agents
to discover good joint policies, merely through the evolutionary
optimization on the mainland, declines.

Teams trained with MERL outperform IM on both coupling con-
straints. Like DA-IM, the gradient-based and evolutionary opti-
mization processes share experiences in MERL allowing agents to
bootstrap using class-specific rewards. However, the lack of diver-
sity in MERL limits its performance. Consistent with cooperative

Figure 5: Phylogenetic tree demonstrating the progression
of diversity search in DA-IM for rovers in the cooperative
mining problem. Each node represents a policy. The node
color and opacity indicate the average fitness of teams it
participated in (yellow is higher). The size of a node indicates
the number of descendants it produced. The tree highlights
that systematic ES gradient applied to low-fitness policies
can createmultiple lineages of diverse (shown spatially) high-
fitness descendants.

mining, MRL produces low-fitness teams with policies that usu-
ally learn to optimize the class-specific rewards, but fail to learn
inter-class relationships required to succeed.

5.3 Informed Diversity
Finally, we quantitatively examine the behavioral diversity acquired
between agents of the four classes in cooperative mining (CM) and
common interest mining (CIM). The expected action variance (EAV)
for each class is computed using the action distributions generated
by evaluating the elite teams after training has been completed.
Table 1 shows the EAV for DA-IM and the baselines. Due to its low
fitness in the previous experiments, we disregard MRL.

Between the three compared methods, DA-IM achieves the high-
est EAV for all four agent classes. We also observe that the EAV
is typically higher when the class-specific and team objectives are
misaligned (in CIM). We hypothesize that this is likely a conse-
quence of the drillers and excavators adaptively choosing between
the two ores that are incentivized by their class-specific and team
objectives. Indeed, this is supported by the distribution of policies
in the inferred behavior space (consequently demonstrating the
quality of the elite archive) for the driller class (figure 6, A). DA-
IM produces uniform coverage in the inferred space with several
high-fitness (average fitness across the elite teams) policies. Inter-
estingly, policies from elite teams trained with IM also exhibit some
diversity, albeit attaining significantly lower fitness. This can be
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Figure 6: Inferred behavior spaces for the driller class in common interest mining. DA-IM produces diverse high-fitness policies
(yellow is higher) with a uniform coverage (A). IM’s behavior space is characterized by sparse disjoint regions that contain
low-fitness policies (B). Policies projected in the behavior space (generated by DA-IM) show low-fitness homogeneous solutions
for MERL (C).

likely attributed to IM’s use of uninformed mutation on the islands,
leading to policies that exhibit diverse, but low-fitness behaviors.
The inferred behavior space (figure 6, B) confirms this observation:
it is sparsely populated with low-fitness policies. MERL lacks an
explicit diversity search mechanism and instead optimizes policies
in a team to converge to a single “optimal" behavior (the parameter
sharing in MERL partly contributes to this). Policies trained with
MERL exhibit low EAV across the classes and environment. This
is also supported by the uniform localized spread of low-fitness
policies in the behavior space (figure 6, C).

DA-IM’s informed diversity search can be attributed to not only
the experiences from the mainland used to train the autoencoder,
but also to the gradient-based ES that allows systematic explo-
ration in the behavior space. Figure 5 highlights the progression of
diversity search for rovers in the cooperative mining problem.

CM CIM
DA-IM
Rovers / Drillers 0.832 0.717
Excavators 0.587 0.824
Refiners 0.270 0.311

IM
Rovers / Drillers 0.630 0.665
Excavators 0.334 0.592
Refiners 0.283 0.298

MERL
Rovers / Drillers 0.216 0.187
Excavators 0.239 0.296
Refiners 0.172 0.103

Table 1: Expected action variance for the four agent class
on cooperative mining (CM) and common interest mining
(CIM).

6 DISCUSSION
This work introduces Diversity-Aligned Island Model (DA-IM), a
multiagent learning framework that enables teams of asymmetric
agents to learn diverse behaviors required to balance potentially
conflicting class-specific and team objectives. DA-IM leverages a
combination of gradient-based and gradient-free optimizers which
converge in concert by sharing policies through the behavior spaces.
The gradient-free evolutionary algorithm evolves a population of
teams to maximize the team objective. The experiences collected
during evolution are used by each agent class to: 1) Sample policy
gradients using a gradient-based off-policy algorithm to reinforce
behaviors that maximize class-specific objectives; and 2) Train an
autoencoder to learn low dimensional representations of the state-
action trajectories drawn from the experiences. The resulting re-
duced spaces are utilized by a gradient-based evolution strategy to
perform informed diversity.

Periodically, policies from both processes are added to the shared
behavior spaces. The evolutionary algorithm samples policies from
the behavior spaces thus ensuring that diverse policies from the
gradient-based optimizers permeate the team population. The ex-
periences collected during evolution are used to retrain the autoen-
coder which will then bias the diversity search process towards
regions of the behavior space that yield high-fitness policies.

DA-IM’s primary goal was to enable informed diversity search
and ensure alignment between class-specific and team objectives.
The separation of diversity search and team optimization opens
several opportunities to parallelize and scale DA-IM to address
nuanced problems that require agents to consider a spectrum of
trade-offs between potentially conflicting objectives.
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