
Dirichlet-Multinomial Counterfactual Rewards for Heterogeneous
Multiagent Systems*

Gaurav Dixit1, Nicholas Zerbel1, and Kagan Tumer1

Abstract— Multi-robot teams have been shown to be effective
in accomplishing complex tasks which require tight coordina-
tion among team members. In homogeneous systems, recent
work has demonstrated that “stepping stone” rewards are an
effective way to provide agents with feedback on potentially
valuable actions even when the agent-to-agent coupling require-
ments of an objective are not satisfied. In this work, we propose
a new mechanism for inferring hypothetical partners in tightly-
coupled, heterogeneous systems called Dirichlet-Multinomial
Counterfactual Selection (DMCS). Using DMCS, we show that
agents can learn to infer appropriate counterfactual partners
to receive more informative stepping stone rewards by testing
in a modified multi-rover exploration problem. We also show
that DMCS outperforms a random partner selection baseline
by over 40%, and we demonstrate how domain knowledge can
be used to induce a prior to guide the agent learning process.
Finally, we show that DMCS maintains superior performance
for up to 15 distinct rover types compared to the performance
of the baseline which degrades rapidly.

I. INTRODUCTION

Multi-robot (multiagent) coordination is a difficult control
problem, particularly in tightly-coupled multiagent environ-
ments where agents must take complimentary actions at
similar times in order to achieve an objective [1]. Despite
the inherent difficulties with multi-robot coordination, it is
possible to accomplish a wide variety of complex tasks using
multi-robot teams. For example, multi-robot teams could be
used effectively for tasks such as exploration [2], [3], air
traffic control [4]–[7], and satellite orbital configuration [8].

Recent work introduced the idea of D++ structural credit
assignment which provides agents with “stepping stone” re-
wards in tightly-coupled, homogeneous systems by allowing
agents to infer hypothetical partners when needed [9], [10].
These stepping stone rewards guide agents to potentially
valuable actions even if the agent-to-agent coupling for
a given action has not been satisfied yet. However, with
the default counterfactual partner selection method, agents
are unable to select appropriate partners when operating in
heterogeneous teams. This represents a serious coordination
problem since many real-world multi-robot problems require
team members to have different functions and capabilities.

In this work, we introduce Dirichlet-Multinomial Coun-
terfactual Selection (DMCS) which uses Bayesian inference

*This work was partially supported by the National Science Foundation
Grant IIS-1815886, the Air Force Office of Scientific Research grant
FA9550-19-1-0195, and the National Aeronautics and Space Administration
Grant 80NSSC18K0941.

1The authors are with the Collaborative Robotics and Intel-
ligent Systems (CoRIS) Institute, Oregon State University, 1500
SW Jefferson Way, Corvallis, OR, USA [dixitg, zerbeln,
kagan.tumer]@orgeonstate.edu

to effectively turn the problem of selecting appropriate
counterfactual partners into a multi-armed bandit problem
[11]. To generate effective stepping stone rewards, agents
must learn to pick agents of types that can satisfy the
coordination requirements of the environment. Thus, ef-
fective counterfactual selection depends on being able to
model the environment. Assuming the underlying structure
of the reward dynamics of the environment is distributed
using some generating distribution, the prevalence of agent
types can be modeled as a multinomial distribution. The
posterior of choosing a counterfactual agent type needs to
incorporate uncertainty to encourage exploration in terms
of counterfactual selection. We can express this formulation
with Bayesian inference that uses a Dirichlet conjugate prior
with a multinomial distribution. Using DMCS, we show
that D++ can be extended to heterogeneous, tightly-coupled
multiagent systems.

To validate this approach, we apply D++ with DMCS to
a heterogeneous version of the tightly-coupled multi-rover
exploration problem. We show that, with DMCS, agents
are able to learn which counterfactual partners should be
sampled to provide them with the most effective stepping
stone rewards. We show that agents using D++ with DMCS
are able to learn to coordinate in a tightly-coupled, het-
erogeneous system while agents using D++ with standard
selection fail to coordinate. We also show that DMCS
outperforms random selection of partners by over 40%, and
achieves superior performance for up to 15 distinct rover
types compared to the performance of the baseline. Finally,
we show that domain knowledge can be used in DMCS to
induce prior beliefs to improve agent learning.

The contributions of this work are to:

• Introduce a Bayesian inference based selection mech-
anism for choosing hypothetical partners which im-
proves learned coordination behaviors in heterogeneous,
tightly-coupled systems;

• Reduce the difficulty in learning effective coordination
strategies by incorporating prior domain knowledge into
the selection mechanism.

The remainder of this work is organized as follows:
Section II covers the necessary background including related
work. Section III discusses the tightly-coupled, heteroge-
neous rover domain. Section IV formally introduces DMCS.
In Section V we describe the setup of our experiments, and,
in Section VI, we discuss the results of this work. Finally, in
Section VII, we present our conclusions and identify possible
areas for future work.



II. BACKGROUND AND RELATED WORK

In this section we cover the necessary background infor-
mation which supports this work. We conclude this section
with a discussion on related works.

A. Multiagent Reinforcement Learning

Multiagent reinforcement learning is challenging due to
the inherent non-stationarity of the environment created by
multiple agents learning simultaneously [12], [13]. Inde-
pendent Q-learning agents often do not perform well and
cannot learn tasks that require coordination. Some of the
recent methods to address coordination and non-stationarity
have focused on using an actor-critic architecture with a
centralized critic [14]. Variants of these methods often use
joint states and actions of all the agents in the system to
learn coordination policies. These methods fail to scale to
environments with a large number of agents and actions. The
learning architectures are tightly coupled to the number of
agents in the system making it difficult to learn and operate
when agents might fail or new agents are introduced. The
learning is also slow when the rewards are sparse and require
tight coordination.

B. Reward Shaping

In cooperative multiagent systems, where agents need
to learn coordinated behaviors, the design of agent reward
functions has a significant impact on agent-to-agent interac-
tions and the performance of the overall system [12], [13],
[15]. The key to constructing good agent reward functions
is to balance the feedback an agent receives (based on its
individual actions) with the system-level coordination with
other agents [13], [16]. Ideally, any increase in an individual
agent’s reward will simultaneously increase the overall per-
formance of the system. This process of determining agent
credit assignment is referred to as reward shaping [17], [18],
and it is a powerful tool utilized in multiagent learning [19].

C. Difference Evaluations

Multiagent learning can be difficult due to the reward-
signal noise generated from other agents learning simultane-
ously; however, learning distributed policies has been shown
to improve team performance in loosely-coupled multiagent
systems [7], [12], [20]–[23]. Learning coordination implicitly
in this manner is made possible by shaping agent reward
signals so that any increase in an individual agent’s reward
simultaneously increases the overall system score [2], [16],
[24], [25]. Difference evaluations (Eqn. 1) are a shaped
reward which provides agents with information relating its
individual actions to the impact it made on the system [18],
[24]. Specifically, difference evaluations remove much of the
noise generated from multiple agents acting in a system
by leveraging a counterfactual argument (often considered
as a “null” action) and comparing what the current system
score is with a hypothetical score. This “null” action is one
example of a counterfactual utilized in difference evaluations;
however, other actions may be used so long as the action
is independent of the individual agent’s selected action.

With this setup, any improvement in an agent’s difference
reward simultaneously improves the overall performance of
the system.

Di(z) = G(z)−G(z−i ∪ ci) (1)

In Eqn. 1, z represents the current joint-state of the agents
in the system, Di(z) is the difference reward received by
agent i, G(z) is the actual system score (or global reward),
and G(z−i ∪ ci) is the global reward with a counterfactual
action, ci, taken in place of agent i’s actual action.

Previous works have demonstrated that difference evalu-
ations perform extremely well in loosely-coupled systems
with homogeneous agents [6], [16], [17], [24]. However,
difference evaluations struggle to achieve good system per-
formance in tightly-coupled systems unless reward functions
are specifically altered to encourage teaming [26]. One issue
with using difference evaluation functions in tightly-coupled
multiagent systems is that the rewards received by an agent
are extremely sparse [9], [10]. For example, an agent may
discover a potentially beneficial action to take; however,
without other agents there to reinforce that action, the agent
would not receive a reward. Even in loosely coupled multi-
agent systems, it can be difficult for an agent to “stumble”
upon a good action. In a tightly-coupled system, multiple
agents would need to “stumble” upon a good action at the
same time which is statistically unlikely to happen within a
viable timeframe [9], [10].

D. D++ Evaluation

Although difference evaluations allow for cooperative
learning implicitly, it is generally ineffective in tightly-
coupled systems due to reward sparsity. To contend with
the reward sparsity, D++ structural credit assignment (in-
troduced by Rahmattalabi et al [9], [10]) introduces the
concept of “stepping stone” rewards which help guide agents
to potentially beneficial actions even when a team member
is not yet present to take a complimentary action. Instead of
inferring a counterfactual action taken by agent i, D++ eval-
uations introduce counterfactual partners which are copies of
the current agent inferred as partners. We further define D++

evaluations below

D++(i, n) =
G(z+(∪i=1,...,n

)−G(z)
n

(2)

where n represents the number of counterfactual partners
added, D++(i, n) represents the reward received by agent
i with n counterfactual partners, and G(z+(∪i=1,...,n

) repre-
sents what the global score would be with if there were n
agents taking supporting the action. Dividing by the n term
in Eqn. 2 normalizes the reward with respect to the number
of added counterfactual partners.

E. Related Work

To address the challenge of multi-robot coordination in
multiagent systems, some researchers utilize direct commu-
nication between team members to develop coorindation
behaviors [3], [27], [28]. Sometimes, that communication



is centralized as seen in Pusher-Watcher (by Gerkey and
Matarić [1]) which utilizes a centralized, auction-based sys-
tem to allocate agents to specific tasks. In other examples,
the communication is distributed and is managed using
communications protocols as is the case in many approaches
to RoboCup robotic soccer teams [27]. In both of these
examples, communication is explicit and relies on a com-
munications channel strong enough to transmit data. There
are also several works which deal with communications
in tightly-coupled multiagent systems and heterogeneous
multiagent systems [3], [27], [28]. Although this research
shows that communication, when handled properly, is ex-
tremely effective in improving coordination among team
members, communication is often expensive to implement
and extremely limited by the environment [26]. For example,
in an exploration domain it is likely that rovers will travel
to remote regions in order to explore where high-fidelity
communication cannot be established with the rest of the
team [3]. This may lead to sub-optimal behaviors as robots
explore areas already explored by another robot.

Other works focus on implicitly learning distributed agent
policies [12], [20]–[22] to address the multi-robot coor-
dination challenge. For example, the work by Pagello et
al [28] demonstrates an approach to robotic soccer using
implicit, stigmergic communications in which robots infer
actions based on observing the actions of their teammates.
In this work, we introduce a new method for selecting
counterfactual partners which allows agents to access more
informative stepping stone rewards.

III. ROVER COORDINATION PROBLEM

In this work, we investigate the performance of DMCS
in a tightly-coupled, multi-robot exploration domain known
as the rover domain. In the classic example of the rover
domain, a team of rovers on Mars are tasked with exploring
points of interest (POI) spread out across a two-dimensional,
continuous space. Each POI has a different observational
value associated with it, and rovers only receive rewards
for observations which are made within a certain radius
of the POI, Robs. Only the closest observation of a POI
is counted towards the overall system; therefore, even if
multiple rovers are observing the same POI, only the closest
of those observations is counted. For that reason, an optimal
strategy in the classic rover domain is for rovers to disperse
and explore different regions of the map. Additionally, each
rover is equipped with two different sensors: one sensor
detects POIs on the map, and the second sensor detects other
rovers on the map.

A. Tightly-Coupled Rover Domain

The tightly-coupled version of the rover domain modifies
the domain mechanics to make it a requirement that POIs
be observed by multiple rovers at the same time in order for
rewards to be given. Similar to the classic rover-domain, only
the closest observations of a POI count towards the system
goal. Based on the required number of observations, m, the
observations of the m closest rovers are counted towards the

system score. We can express the system reward function as
given in Eqn. 3.

G(z) =
∑
i

∑
j

∑
k

ViN
1
i,jN

2
i,k

0.5(δi,j + δi,k)
(3)

In Eqn. 3, Vi represents the value associated with POI i,
δi,j is the distance between POI i and the closest rover j, δi,k
is the distance between POI i and the second closest rover
k, and both N values are constants which denote whether or
not the coupling requirement is satisfied. In other words N1

i,j

and N2
i,k are determined by equations 4 and 5, respectively.

N1
i,j =

{
1, if δi,j ≤ Robs

0, otherwise
(4)

N2
i,k =

{
1, if δi,k ≤ Robs

0, otherwise
(5)

B. Hetereogeneous Multi-Rover Problem

In this work, we modify the tightly-coupled rover problem
further by introducing heterogeneous rover teams. These
rovers follow the same set of rules in terms of movements
and observation distances. Additionally, the rovers’ sensors
are density based, and they detect the density of POIs and
other rovers per quadrant relative to the sensing rover’s
position. The POI and rover density sensors are described
further by equations 6 and 7, respectively.

SD
POI =

1

Ni,q

∑
i∈q

Vi
δi,j

(6)

SD
Rover =

1

Nk,q

∑
k∈q

1

δj,k
(7)

In Eqn. 6, q represents the quadrant being scanned, i
designates the POI located in quadrant q, Vi is the value of
POI i, and δi,j is the distance between the current rover, j,
and POI i. In Eqn. 7, k represents other rovers in q, and δj,k
represents the distance between the rover, j, and a different
rover, k. Furthermore, Ni,q and Nk,q represent the number
of POIs and rovers detected in quadrant q, respectively.

In addition to multiple rover types, the POI also have
different criteria which must be satisfied in order for them to
be considered observed. This point is illustrated further by
Fig. 1 where there are three rover types present: circle, star,
and diamond. Each POI, represented by a triangle, must be
observed by a rover of each type as indicated. This figure
demonstrates the importance of selecting the appropriate
counterfactual partners so that an agent receives an accurate
stepping stone reward from D++.

IV. DIRICHLET-MULTINOMIAL COUNTERFACTUALS

In this section we formalize DMCS and discuss the multia-
gent reinforcement learning algorithm used in the multi-rover
exploration domain.



Fig. 1. Heterogeneous rover domain with three exploratory rovers and three
POIs (represented as triangles). Each rover is of a different type (diamond,
circle, or star), and each POI must be observed by rovers of certain types
as indicated.

A. Dirichlet-Multinomial Counterfactual Selection

To extend D++ to heterogeneous multiagent systems, we
introduce a new method for choosing counterfactual part-
ners called Dirichlet-Multinomial Counterfactual Selection
(DMCS). Agents using D++ with DMCS, choose counter-
factual partners from a learned posterior distribution over
the prevalence of agent types. The underlying model is a
multinomial distribution with parameters pk over k agent
types. The parameter vector for this multinomial is drawn
from a Dirichlet distribution, which forms the conjugate prior
distribution for multinomial likelihood. The choice of Dirich-
let distribution follows from the rover domain assumptions,
but inference using other suitable distributions would also
lead to similar results. The concentration hyperparameter
vector α induces a prior in the Dirichlet distribution. This
prior can come from domain knowledge and represents the
prior belief in gain from selecting a particular type of agent
as a counterfactual. A single point estimate (for instance,
the mean of the distribution), helps agents pick a type as a
counterfactual partner. This can be expressed analytically as:

E[Pi|τ, α] =
ci + αi

n+
∑

k αk
(8)

In Eqn. 8, ci is the number of counterfactual agents of
each type that generated a stepping stone reward, n is the
total number of counterfactual agents sampled so far and α
represents the prior belief. This approach does not account
for the uncertainty associated due to the limited amount of
exploration and observed evidence. A Bayesian approach
however, will help model this uncertainly by generating
a posterior distribution and simultaneously provide point
estimates for greedy selection. The goal is to estimate the
posterior distribution for the probability of selecting each
type, p, conditioned on the observations τ and prior belief
vector α, given by (P |τ, α).

We start by building the model using prior belief α and
observations τ , and then use it to sample from the posterior
to approximate the posterior with Markov Chain Monte
Carlo (MCMC) methods. We use MCMC methods because
exact inference is tractable only for conjugate distributions.
In particular, we use the No-U-Turn Sampler (NUTS) [29]
because it can reach a good estimate of the posterior with
only a few initial observations. A trace is generated by
drawing 1000 samples from the posterior in three chains
(with discarding). As the number of samples increases, the
estimated posterior converges to the true posterior. After
sufficient observations, the posterior’s credible interval will
be small enough to correctly model the underlying structure
of the POI constraints in the environment.

This approach effectively turns counterfactual sampling
into a multi-armed bandit problem [11] where the agent
will be more likely to sample certain counterfactual part-
ners based on expected stepping stone rewards. Although
this approach is not guaranteed to always choose the best
counterfactual partners for a given POI like a point estimate
based approach would, its associated uncertainly is necessary
for exploration and dealing with mixed POI constraints.

B. D++ with DMCS

The overall structure of D++ (presented by Rahmattalabi
et al [9], [10]) makes it possible to add in new methods
of counterfactual selection without changing the overall
functionality of the algorithm. We demonstrate this point
further in Algorithm 1 where Di(z) is the difference reward
for agent i, D++(n) is used to express D++ being calculated
with n number of counterfactuals, and NA refers to the
total number of agents required by coupling. With this setup,
agents are still able to leverage difference evaluations when
the difference reward is informative; however, counterfactual
partner selection is now handled using DMCS (Step 9) when
agents estimate stepping stone rewards using D++.

Algorithm 1: D++ with DMCS
1: Calculate Di(z) using Eqn. 1
2: Calculate D++(NA − 1) using Eqn. 2
3: if D++(NA − 1) ≤ Di(z) then
4: return Di(z)
5: else
6: n = 0
7: while n < NA − 1 do
8: n = n+ 1
9: Sample n counterfactuals from the current

estimated posterior
10: Calculate D++(n) using Eqn. 2
11: if D++(n) > D++(n− 1) then
12: Return D++(n)
13: end if
14: end while
15: end if
16: Return Di(z)



V. EXPERIMENTAL SETUP

We carry out experiments in the heterogeneous, tightly-
coupled rover domain to investigate the performance of
DMCS and the effect of prior beliefs. Each agent is a fully
connected feed-forward neural network that maps the state
vector (4 + 4n) for n agent types to two action values,
corresponding to (x, y) that lie in [0, 1]. The weights are
updated using policy gradient methods. The environment is
30 x 30 units, with 18 POIs and 10 rovers. In the first state,
s0, of every episode, the POIs and the agents are randomly
placed within the environment. For every agent, a type is
picked from a uniform distribution U(0, t). The observation
radius is bound between [2, 5]. In the first experiment, the
POIs have a coupling requirement of three. Agent types that
can successfully observe a POI to get a reward are sampled
from a multinomial.

Random sampling from a uniform distribution serves as
a type aware baseline to compare against DMCS. Agents
sample counterfactual partners randomly from among the
types of agents present in the system. It has an advantage
over D++ because it allows agents to sample partners from
types other than its own. However, random selection does
not scale well as more agent types are introduced into
the system. Finally, in a system with just one type, this
essentially collapses to homogeneous D++ using standard
counterfactual selection.

VI. RESULTS AND DISCUSSION

In this section, we compare the performance of D++

using DMCS against D++ using uniform, random partner
selection (baseline), D++ using standard partner selection,
and learning with global reward feedback in the tightly-
coupled multi-rover exploration problem. First, we exam-
ine the behavior of DMCS in a homogeneous multi-rover
system to verify that altering the selection mechanism for
counterfactual partners does not change the functionality of
D++. We then demonstrate the performance of DMCS in the
heterogeneous multi-rover system as well as the influence
of prior belief on the learning process. Finally, we test the
scalability of DMCS for increasing numbers of rover types.

A. Homogeneous Multi-Rover System

To calibrate DMCS, we compare D++ with standard
counterfactual selection against D++ using DMCS, D++

using uniform, random sampling (baseline), as well as global
reward as feedback for agent learning in a homogeneous
system. This system is identical to the tightly-coupled rover
problem used in the work by Rahmattalabi et al [9]. Figure 2
shows overall system score achieved by the rover teams per
episode of learning. The results show that, in a homogeneous
system, DMCS and uniform sampling achieve the same
level of performance as D++ with standard counterfactual
selection. This is consistent with expectations since all rovers
are of the same type in a homogeneous system, and the
type of partner selected is irrelevant to receiving an accurate
stepping stone reward.

Fig. 2. Homogeneous agents: System reward earned by rover teams per
episode. There are 18 rovers and 10 POIs on a 30x30 world. Each POI
requires observations from 3 rovers. As expected, all selection mechanisms
perform equally well.

B. Heterogeneous Multi-Rover System

To demonstrate the performance of DMCS in heteroge-
neous systems, we compare DMCS with uniform sampling,
D++ with standard counterfactual selection, and using the
global reward for agent learning in a 30x30 world with
18 rovers, 10 POIs, and three rover types. We assume no
domain knowledge and start with a uniform prior for this
experiment. These results, which are representative of the
results in different sizes of rover systems, are illustrated by
Fig. 3. As indicated by the results, uniform sampling can
produce decent coordination policies after some exploration.
However, DMCS learns faster than the baseline because
a few observations of stepping stone reward generating
counterfactuals are enough to start capturing the underlying
POI constraint distribution. This results in more insightful
rewards than uniform sampling where agents are likely
to make poor choices for counterfactual partners. Agents
using DMCS also develop superior coordination strategies
as indicated by the improvement in system rewards earned.
Agents using both the global reward G(z) and D++ with
standard counterfactual selection fail to learn coordinated
behaviors due to the sparsity in rewards received.

To demonstrate the scalability of DMCS, we performed
additional tests with differing numbers of rover types. The
results of these tests are presented in Fig. 4. With a more
diverse population, DMCS performs significantly better than
both the baseline and standard counterfactual selection. As
the number of rover types increases, the performance of
uniform random sampling degrades as it becomes more
likely that agents will select partners which do not provide
them with informative stepping stone rewards. The results
also indicate that the performance of standard counterfactual
selection degrades, almost to 0.0, after nine rover types.



Fig. 3. Heterogeneous agents: System reward earned by rover teams per
episode. There are 18 rovers and 10 POIs on a 30x30 world. Observation
constraints for each POI is generated by randomly sampling from a
distribution over agent types.

Fig. 4. Scalability of DMCS: Normalized system reward earned by rover
teams of increasing heterogeneity. There are 27 rovers and 16 POIs in a
30x30 world. Observation constraint for each POI is generated by randomly
sampling from a distribution over agent types.

C. Influence of Prior Belief on Learning

Figure 5 captures the effect of prior belief on the learned
posterior. The choice of the prior hyperparameter α depends
on the confidence in an agent’s belief. For large values of
α, the prior will weigh in more than the observed evidence
and agents will need to observe the generated stepping stone
reward for many counterfactuals to overcome this prior. For
smaller values of α, the evidence has a stronger influence on
the distribution and will quickly remove the bias introduced
by the prior. The values for α can themselves come from a
distribution. For example, if the rovers have explored similar
terrain before, the learned posterior can be used as the prior
for the next terrain exploration task.

Fig. 5. Influence of prior belief on the learned posteriors for a system
with 3 agent types. Sub-figure (a) shows learned posteriors after starting
with a uniform prior where all types are equally likely to be selected as
partners. The Agent learns the true posteriors after sufficient observations
of partner selection. Sub-figure (b) shows learned posteriors after starting
with a strong, incorrect prior. The posteriors do not converge to the true
value and the probability of choosing an agent of any type is close to 0.33
which implies agents did not learn which partner should be selected.

VII. CONCLUSIONS

In this work, we introduced a new method of select-
ing counterfactual partners, DMCS, which allows agents in
tightly-coupled, heterogeneous systems to utilize D++ to
learn which counterfactual partners should be selected to
produce more informative stepping stone rewards. Using
a learned posterior distribution over agent types, we see
that agents using D++ with DMCS were able to efficiently
choose counterfactual partners; whereas, agents using D++

with standard selection were unable to learn in the heteroge-
neous system. We also see that DMCS results in over 40%
improvement in system performance over the random partner
selection baseline, and we see how domain knowledge can be
used to induce a prior to guide agents in the learning process.
Finally, the results demonstrate the impressive scalability
of DMCS which maintained superior performance as the
number of rover types in the system was increased (up to
15 rover types) while the performance of uniform sampling
degraded rapidly.

DMCS assumes that agents have prior knowledge about
other agents which are available to team up with. In future
work, we will explore how DMCS may be used if this
assumption is not true. Additionally, we will explore how
DMCS performs in problems where diverse agents with dif-
ferent action spaces must coordinate such as search and res-
cue problems where robots partner with non-robot partners
or multi-robot exploration problems involving coordination
between land, water, and aerial vehicles.



REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “Pusher-watcher: An approach to
fault-tolerant tightly-coupled robot coordination,” in Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat. No.
02CH37292), vol. 1. IEEE, 2002, pp. 464–469.

[2] A. Agogino and K. Tumer, “Efficient evaluation functions for multi-
rover systems,” in Genetic and Evolutionary Computation Conference,
Springer. Springer, 2004, pp. 1–11.

[3] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordi-
nated multi-robot exploration,” IEEE Transactions on robotics, vol. 21,
no. 3, pp. 376–386, 2005.

[4] “Implicit adaptive multi-robot coordination in dynamic environments,”
IEEE International Conference on Intelligent Robots and Systems, vol.
2015-Decem, pp. 5168–5173, 2015.

[5] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air
traffic management: A study in multiagent hybrid systems,” IEEE
Transactions on automatic control, vol. 43, no. 4, pp. 509–521, 1998.

[6] K. Tumer and A. Agogino, “Distributed agent-based air traffic flow
management,” Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems - AAMAS ’07, p. 1,
2007.

[7] K. Tumer and A. K. Agogino, “Improving air traffic management
with a learning multiagent system,” Intelligent Systems, vol. 24, no. 1,
Jan/Feb 2009.

[8] S. Damiani, G. Verfaillie, and M.-C. Charmeau, “An earth watching
satellite constellation: How to manage a team of watching agents
with limited communications,” in Proceedings of the fourth interna-
tional joint conference on Autonomous agents and multiagent systems.
ACM, 2005, pp. 455–462.

[9] A. Rahmattalabi, J. J. Chung, M. Colby, and K. Tumer, “D++:
Structural credit assignment in tightly coupled multiagent domains,” in
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International
Conference on, vol. 2016-Novem. IEEE, 2016, pp. 4424–4429.

[10] A. Rahmattalabi, “D++: Structural Credit Assignment in Tightly Cou-
pled Multiagent Domains,” Master’s Thesis, Oregon State University,
2017.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 2012.

[12] P. Stone and M. Veloso, “Multiagent systems: A survey from a
machine learning perspective,” Autonomous Robots, vol. 8, no. 3, pp.
345–383, 2000.

[13] K. Tuyls and K. Tumer, “Multiagent Learning,” in Multiagent Systems,
2nd ed., G. Weiss, Ed. London, England: The MIT Press, 2016,
ch. 10, pp. 423–484.

[14] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and
I. Mordatch, “Multi-agent actor-critic for mixed cooperative-
competitive environments,” CoRR, vol. abs/1706.02275, 2017.
[Online]. Available: http://arxiv.org/abs/1706.02275

[15] P. J. Hoen, K. Tuyls, L. Panait, S. Luke, and J. La Poutré, “An
Overview of Cooperative and Competitive Multiagent Learning,”
Learning and Adaption in Multi-Agent Systems, pp. 1–50, 2005.

[16] A. K. Agogino and K. Tumer, “Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains,” vol. 17, no. 2, pp. 320–
338, 2008.

[17] M. Colby and K. Tumer, “Shaping Fitness Functions for Coevolving
Cooperative Multiagent Systems,” in Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems,
no. June. Valencia, Spain: International Foundation for Autonomous
Agents and Multiagent Systems, 2012, pp. 4–8.

[18] L. Yliniemi and K. Tumer, “Multi-objective multiagent credit assign-
ment through difference rewards in reinforcement learning,” in Asia-
Pacific Conference on Simulated Evolution and Learning, Springer.
Springer, 2014, pp. 407–418.

[19] S. Devlin, M. Grześ, and D. Kudenko, “An Empirical Study of
Potential-Based Reward Shaping and Advice in Complex, Multi-Agent
Systems,” Advances in Complex Systems, vol. 14, no. 02, pp. 251–278,
2011.

[20] M. Bowling and M. Veloso, “Simultaneous adversarial multi-robot
learning,” in IJCAI, vol. 3, 2003, pp. 699–704.

[21] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous agents and multi-agent systems, vol. 11, no. 3,
pp. 387–434, 2005.

[22] K. Tuyls, P. J. Hoen, and B. Vanschoenwinkel, “An evolutionary
dynamical analysis of multi-agent learning in iterated games,” Au-
tonomous Agents and Multi-Agent Systems, vol. 12, no. 1, pp. 115–
153, 2006.

[23] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Controlling
tensegrity robots through evolution,” in Proceedings of the 15th annual
conference on Genetic and evolutionary computation. ACM, 2013,
pp. 1293–1300.

[24] A. Agogino and K. Tumer, “Efficient evaluation functions for evolving
coordination,” Evolutionary Computation, vol. 16, no. 2, pp. 257–288,
2008.

[25] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML,
vol. 99, 1999, pp. 278–287.

[26] M. Knudson and K. Tumer, “Coevolution of heterogeneous multi-robot
teams,” in Proceedings of the 12th annual conference on Genetic and
evolutionary computation. ACM, 2010, pp. 127–134.

[27] L. Iocchi, D. Nardi, M. Piaggio, and A. Sgorbissa, “Distributed coor-
dination in heterogeneous multi-robot systems,” Autonomous Robots,
vol. 15, no. 2, pp. 155–168, 2003.

[28] E. Pagello, A. DAngelo, F. Montesello, F. Garelli, and C. Ferrari,
“Cooperative behaviors in multi-robot systems through implicit com-
munication,” Robotics and Autonomous Systems, vol. 29, no. 1, pp.
65–77, 1999.

[29] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo,” 2011.


